Skip to main content
Log in

Chromium speciation in a contaminated groundwater: redox processes and temporal variability

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Chromium species (Cr(III), Cr(VI), and Cr(III)-organic) in groundwater of a tannery contaminated area were monitored during pre- and post-monsoon seasons for a period of 3 years (May 2004 to January 2007). The objectives of the study were (1) to investigate the temporal variation of chromium species and other matrix constituents and (2) to study the redox processes associated with the temporal variation of chromium species. Samples were collected from 15 dug wells and analyzed for chromium species and other constituents. The results showed that the groundwater was relatively more oxidizing during post-monsoon periods than the pre-monsoon periods. Except one sample, the concentration of chromium species were found in the order of Cr(VI)>Cr(III)>Cr(III)-organic complexes during all the pre- and post-monsoon periods. In most of the wells, the concentrations of Cr(III), Cr(VI), and Cr(III)-organic decreased during post-monsoon periods compared to their pre-monsoon concentrations. However, the Cr(VI)/CrTotal ratio still increased and the Cr(III)/CrTotal ratio decreased during post-monsoon periods in most of the samples. The possible mechanisms for the temporal variation of chromium species were (1) Fe(II) reduction of Cr(VI) vs oxidation of Fe(II) by dissolved oxygen and (2) oxidation of Cr(III) by Mn(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121, 215–222.

    Article  CAS  Google Scholar 

  • Apte, A. D., Verma, S., Tare, V., & Bose, P. (2006). Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Journal of Hazardous Materials, 128, 164–174.

    Article  CAS  Google Scholar 

  • Armienta, M. A., & Quere, A. (1995). Hydrogeochemical behaviour of chromium in the unsaturated zone and in the aquifer of Leon valley, Mexico. Water Air and soil Pollution, 84, 11–29.

    Article  CAS  Google Scholar 

  • Ball, J. W., & Izbicki, J. A. (2004). Occurrence of hexavalent chromium in groundwater in the Western Mojave desert, California. Applied Geochemistry, 19, 1123–1135.

    Article  CAS  Google Scholar 

  • Brigatti, M. F., Franchini, G., Lugli, C., Medici, L., Poppi, L., & Turci, E. (2000). Interaction between aqueous chromium solutions and layer silicates. Applied Geochemistry, 15, 1307–1316.

    Article  CAS  Google Scholar 

  • Buerge, I. J., & Hug, S. J. (1997). Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science and Technology, 31, 1426–1432.

    Article  CAS  Google Scholar 

  • Buerge, I. J., & Hug, S. J. (1998). Influence of organic ligands on chromium(VI) reduction by iron(II). Environmental Science and Technology, 32, 2092–2099.

    Article  CAS  Google Scholar 

  • Chuan, M. C., & Liu, J. C. (1996). Release behavior of chromium from tannery sludge. Water Research, 30, 932–938.

    Article  CAS  Google Scholar 

  • Eary, L. E., & Rai, D. (1987). Kinetics of Cr(III) oxidation to Cr(VI) by reaction with manganese dioxide. Environmental Science and Technology, 21, 1187–1193.

    Article  Google Scholar 

  • Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous iron. Environmental Science and Technology, 22, 972–977.

    Article  CAS  Google Scholar 

  • Fantoni, D., Brozzo, G., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., et al (2002). Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environmetal Geology, 42, 871–882.

    Article  CAS  Google Scholar 

  • Farmer, J. G., Paterson, E., Bewley, R. J. F., Geelhoed, J. S., Hillier, S., Meeussen, J. C. L., et al (2006). The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites. Science of the Total Environment, 360, 90–97.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., & Zasoski, R. J. (1992). Chromium(III) oxidation by δ-MnO2.1. Characterization. Environmental Science and Technology, 26, 79–85.

    Article  CAS  Google Scholar 

  • Fonseca, B., Teixeira, A., Figueiredo, H., & Tavares, T. (2009). Modeling of the Cr(VI) transport in typical soils of the North of Portugal. Journal of Hazardous Materials, 167, 756–762.

    Article  CAS  Google Scholar 

  • Geelhoed, J. S., Meeussen, J. C. L., Roe, M. J., Hillier, S., Thomas, R. P., Farmer, J. G., et al (2003). Chromium remediation or relese? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Environmental Science and Technology, 37, 3206–3213.

    Article  CAS  Google Scholar 

  • Gheju, M., & Iovi, A. (2006). Kinetics of hexavalent chromium reduction by scrap iron. Journal of Hazardous Materials, 135, 66–73.

    Article  CAS  Google Scholar 

  • Ginder-Vogel, M., Borch, T., Mayes, M. A., Jardine, P. M., & Fendorf, S. (2005). Chromate reduction and retention processes within arid subsurface environments. Journal of Hazardous Materials, 39, 7833–7839.

    CAS  Google Scholar 

  • Gonzalez, A., Ndung, K., & Flegal, A. R. (2005). Natural occurrence of hexavalent chromium in the Aromas red sands aquifer, California. Environmental Science and Technology, 39, 5505–5511.

    Article  CAS  Google Scholar 

  • Guo, T., DeLaune, R. D., & Patrick, W. H. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environmetal International, 23, 305–316.

    Article  CAS  Google Scholar 

  • He, Y. H., Chen, C. -C., & Traina, S. J. (2004). Inihibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions. Environmental Science and Technology, 38, 5535–5539.

    Article  CAS  Google Scholar 

  • Henderson, T. (1994). Geochemical reduction of hexavalent chromium in the trinity sand aquifer. Ground Water, 32, 477–486.

    Article  CAS  Google Scholar 

  • Hwang, I., Batchelor, B., Schlautman, M. A., & Wang, R. (2002). Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids. Journal of Hazardous Materials, B92, 143–159.

    Google Scholar 

  • James, B. R., & Bartlett, R. J. (1983). Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. Journal of Environmental Quality, 12, 177–181.

    Article  CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.

    Article  CAS  Google Scholar 

  • Koppelman, M. H., & Dillard, J. G. (1980). Adsorption of Cr(NH3)6 (super 3 + ) and Cr(en)3 (super 3 + ) on clay minerals and the characterization of chromium by X-ray photoelectron spectroscopy. Clays and Clay Minerals, 28, 211–216.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmetal Pollution, 107, 263–283.

    Article  CAS  Google Scholar 

  • Kozuh, N., Stupar, J., & Gorenc, B. (2000). Reduction and oxidation processes of chromium in soils. Environmental Science and Technology, 34, 112–119.

    Article  CAS  Google Scholar 

  • Kumar, A. R., & Riyazuddin, P. (2010). Chromium speciation in groundwater of a tannery polluted area of Chennai City, India. Environmetal Monitoring and Assessment, 160, 579–591.

    Article  CAS  Google Scholar 

  • Leita, L., Margon, A., Pastrello, A., Arcon, I., Contin, M., & Mosetti, D. (2009). Soil humic acids may favour the persistence of hexavalent chromium in soil. Environmental Pollution, 157, 1862–1866.

    Article  CAS  Google Scholar 

  • Lin, C. -J. (2002). The chemical transformations of chromium in natural waters—A model study. Water Air and Soil Pollution, 139, 137–158.

    Article  CAS  Google Scholar 

  • Lindberg, R. D., & Runnels, D. D. (1984). Groundwater redox reactions: An analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science, 225, 925–927.

    Article  CAS  Google Scholar 

  • Loyaux-Lawniczak, S., Lecomte, P., & Ehrhardt, J. -J. (2001). Behavior of hexavalant chromium in a polluted groundwater: Redox processes and immobilization in soils. Environmental Science and Technology, 35, 1350–1357.

    Article  CAS  Google Scholar 

  • Ludwing, R. D., Su, C., Lee, T. R., Wilkin, R. T., & Sass, B. M. (2008). In situ source treatment of Cr(VI) using a Fe(II)-based reductant blend: Long-term monitoring and evaluation. Journal of Environmental Engineering, 134, 651–658.

    Article  Google Scholar 

  • Pantsar-Kallio, M., Reinikainen, S. -P., & Oksanen, M. (2001). Interactions of soil components and their effects on speciation of chromium in soils. Analytica Chimica Acta, 439, 9–17.

    Article  CAS  Google Scholar 

  • Parks, J. L., McNeill, L., Frey, M., Eaton, A. D., Haghani, A., Ramierez, L., & Edward, M. (2004). Determination of total chromium in environmental water samples. Water Research, 38, 2827–2838.

    Article  CAS  Google Scholar 

  • Qafoku, N. P., Dresel, P. E., McKinley, J. P., Liu, C., Heald, S. M., Ainsworth, C. C., et al (2009). Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface. Environmental Science and Technology, 43, 1071–1077.

    Article  CAS  Google Scholar 

  • Qin, G., Mcguire, M. J., Blute, N. K., Seidel, C., & Fong, L. (2005). Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: A pilot-scale study. Environmental Science and Technology, 39, 6321–6327.

    Article  CAS  Google Scholar 

  • Rai, D., Sass, B. M., & Moore, D. A. (1987). Cr(III) Hydrolysis constants and solubility of Cr(III) hydroxide. Inorganic Chemistry, 26, 345–349.

    Article  CAS  Google Scholar 

  • Schlautman, M. A., & Han, I. (2001). Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research, 35, 1534–1546.

    Article  CAS  Google Scholar 

  • Schroeder, D. C., & Lee, G. F. (1975). Potential transformations of chromium in natural waters. Water Air and soil Pollution, 4, 355–365.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Bertsch, P. M., & Schwallie, L. (1999). In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science and Technology, 33, 938–944.

    Article  CAS  Google Scholar 

  • Sedlak, D. L., & Chan, P. G. (1997). Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61, 2185–2192.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Edmunds, W. M. (2002). Redox patterns and trace-element behavior in the east midlands triassic sandstone aquifer, U.K. Ground Water, 40, 44–58.

    Article  CAS  Google Scholar 

  • Stefansson, A., Arnorsson, S., & Sveinbjornsdottir, A. E. (2005). Redox reactions and potentials in natural waters at disequilibrium. Chemical Geology, 221, 289–311.

    Article  CAS  Google Scholar 

  • Subramanian, K. (1988). Determination of chromium(III) and chromium(VI) by ammonium pyrrolidinecarbodithioate-methyl isobutyl ketone furnace atomic absorption spectrometry. Analytical Chemistry, 60, 11–15.

    Article  CAS  Google Scholar 

  • Tokunaga, T. K., Wan, J., Lanzirotti, A., Sutton, S. R., Newville, M., & Rao, W. (2007). Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environmental Science and Technology, 41, 4326–4331.

    Article  CAS  Google Scholar 

  • Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785–790.

    Article  CAS  Google Scholar 

  • WHO (2004). Guidelines for drinking water quality (3rd ed.), Vol. 1, Geneva.

  • Wittbrodt, P. R., & Palmer, C. D. (1995). Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environmental Science and Technology, 29, 255–263.

    Article  CAS  Google Scholar 

  • Zachara, J. M., Girvin, D. C., & Schmidt, R. L. (1987). Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environmental Science and Technology, 21, 589–594.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patel Riyazuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A.R., Riyazuddin, P. Chromium speciation in a contaminated groundwater: redox processes and temporal variability. Environ Monit Assess 176, 647–662 (2011). https://doi.org/10.1007/s10661-010-1610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1610-5

Keywords

Navigation