Skip to main content
Log in

A preliminary study on the nature of particulate matters in vehicle fuel wastes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and tunneling electron microscopy (TEM) studies of two solid vehicle wastes (pollutants) from petrol- and diesel-fueled engines of Kolkata (India) have detected a significant amount of ultrafine particles in the nanometer scale in these wastes. Both powder XRD and selected area electron diffraction from TEM have confirmed the existence of inhomogeneous distribution of nanocrystallites in these pollutants. Energy dispersive X-ray spectrometry shows that these wastes contain mainly carbon and oxygen as the constituent components. These pollutants are magnetic in nature as seen with SQUID magnetometry, and the presence of a high amount of carbon presumably is likely the origin of the magnetic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arčon, D., Jagličič, Z., Zorko, A., Rode, A. V., Christy, A. G., Madsen, N. R., et al. (2006). Origin of magnetic moments in carbon nanofoam. Physical Review B, 74, 014438–014446.

    Article  Google Scholar 

  • Barzola-Quiquia, J., Esquinazi, P., Rothermel, M., Spemann, D., Setter, A., & Butz, T. (2007). Nuclear instruments & methods in physics research. Section B, Beam Interactions with Materials and Atoms, 256, 412–414.

    Article  CAS  Google Scholar 

  • Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109, 2655–2671.

    Article  Google Scholar 

  • Cullity, B. D. (1956). Elements of X-ray diffraction (p. 99). Reading: Addison-Wesley.

    Google Scholar 

  • Flanders, P. J. (1994). Collection, measurement and analysis of airborne magnetic particulates from pollution in the environment. Journal of Applied Physics, 75, 5931–5936.

    Article  CAS  Google Scholar 

  • Gautam, P., Blaha, U., & Appel, E. (2005). Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 39, 2201–2211.

    Article  CAS  Google Scholar 

  • Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., et al. (2003). Scanning electron microscopy and X-ray microanalysis (3rd Ed.). New York: Kluwer Academic.

    Google Scholar 

  • Gupta, R. R. (1986). Landolt–Börnstein new series II/16 diamagnetic susceptibility (Vol. 16, p. 7). Berlin: Springer.

    Google Scholar 

  • Hay, K. L., Dearing, J. A., Baban, S. M. J., & Loveland, P. (1997). A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements. Physics and Chemistry of the Earth, 22, 207–210.

    Article  Google Scholar 

  • Hunt, A., Jones, J., & Oldfield, F. (1984). Magnetic measurements and heavy metals in atmospheric particles of anthropogenic origin. Science of the Total Environment, 33, 129–139.

    Article  CAS  Google Scholar 

  • Hunt, A. (1986). The application of mineral magnetic methods to atmospheric aerosol discrimination. Physics of the Earth and Planetary Interiors, 42, 10–21.

    Article  Google Scholar 

  • Jordanova, N., Jordanova, D., Henry, B., Le Goff, M., Dimov, D., & Tsachev, T. (2006). Magnetism of cigarette ashes. Journal of Magnetism and Magnetic Materials, 301, 50–66.

    Article  CAS  Google Scholar 

  • Kawabata, K., Mizutani, M., Fukuda, M., & Mizogami, S. (1989). Ferromagnetism of pyrolytic carbon under low-temperature growth by the CVD method. Synthetic Metals, 33, 399–402.

    Article  CAS  Google Scholar 

  • Makarova, T. (2005). Frontiers in magnetic materials. Berlin: Springer.

    Google Scholar 

  • Migozami, S., Mizutani, M., Fukuda, M., & Kawabata, M. (1991). Abnormal ferromagnetic behavior for pyrolytic carbon under low temperature growth by CVD method. Synthetic Metals, 43, 3271–3274.

    Article  Google Scholar 

  • Moreno, E., Sagnotti, L., Dinarès-Turell, J., Winkler, & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment, 37, 2967–2977.

    Article  CAS  Google Scholar 

  • Murata, K., Ueda, H., & Kawaguchi, K. (1991). Preparation of carbon powders by pyrolysis of cyclododecane under vacuum and their magnetic properties. Synthetic Metals, 44, 357–362.

    Article  CAS  Google Scholar 

  • Murr, L. E., Soto, K. F., Esquivel, E. V., Bang, J. J., Guerrero, P. A., Lopez, D. A., et al. (2004). Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study. Journal of the Minerals Metals and Materials Society, 56, 28–31.

    CAS  Google Scholar 

  • Muxworthy, A. R., Schmidbauer, E., & Petersen, N. (2002). Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: A case study from Munich, Germany. Geophysical Journal International, 150, 558–570.

    Article  Google Scholar 

  • Neal, A. (2005). Air pollution-related illness: Effects of particles. Science, 308, 804–806.

    Article  Google Scholar 

  • Ohldag, H., Tyliszczak, T., Höhne, R., Spemann, D., Esquinazi, P., Ungureanu, M., et al. (2006). \(\uppi \)-Electron ferromagnetism in metal free carbon probed by soft X-ray dichromism. Physical Review Letters, 98, 187204.

    Article  Google Scholar 

  • Pandey, S. K., Tripathi, B. D., Prajapati, S. K., Mishra, V. K., Upadhaya, A. R., Rai, P. K., et al. (2005). Magnetic properties of vehicle-derived particulates and amelioration by Ficus infectoria: A keystone species. AMBIO, 34, 645–646.

    Google Scholar 

  • Patterson, A. L. (1939). The diffraction of X-rays by small crystalline particles. Physical Review, 56, 972–982.

    Article  CAS  Google Scholar 

  • Petrovsky, E., & Elwood, B. (1997). Quaternary climates, environments and magnetism (pp. 279–322). Cambridge: Cambridge University Press.

    Google Scholar 

  • Prajapati, S. K., Pandey, S. K., & Tripathi, B. D. (2006). Monitoring of vehicles derived particulates using magnetic properties of leaves. Environmental Monitoring and Assessment, 20, 169–175.

    Article  Google Scholar 

  • Rao Goddu, S., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam (India)—Relationship to industrial pollution and road traffic. Physics and Chemistry of the Earth, Parts A/B/C, 29, 985–995.

    Article  Google Scholar 

  • Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate and air pollution and mortality in 20 U.S. cities. New England Journal of Medicine, 343, 1742–1749.

    Article  CAS  Google Scholar 

  • Shilton, V. F., Booth, C. A., Smith, J. P., Giess, P., Mitchell, D. J., & Williams, C. D. (2005). Magnetic properties of urban street dust and their relationship with organic matter content in the West Midlands, UK. Atmospheric Environment, 39, 3651–3659.

    Article  CAS  Google Scholar 

  • Shu, J., Dearing, J. A., Morse, A. P., Yu, L., & Yuan, N. (2001). Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmospheric Environment, 35, 2615–2625.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Moreno, T., & Querol, X. (2009). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.

    Article  CAS  Google Scholar 

  • Stroink, G. (1985). Magnetic measurements to determine dust loads and clearance rates in industrial workers and miners. Medical & Biological Engineering & Computing, 23(Suppl 1), 44–49.

    Google Scholar 

  • Veranth, J. M., Gelein, R., & Oberdörster, G. (2003). Vaporization–condensation generation of ultrafine hydrocarbon particulate matter for inhalation toxicology studies. Aerosol Science and Technology, 37, 603–609.

    Article  CAS  Google Scholar 

  • Wahlin, P., Berkowicz, R., & Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40, 2151–2159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A., Mandal, H., Roy, M. et al. A preliminary study on the nature of particulate matters in vehicle fuel wastes. Environ Monit Assess 176, 473–481 (2011). https://doi.org/10.1007/s10661-010-1598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1598-x

Keywords

Navigation