Skip to main content
Log in

Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Harzandat plain is part of the East Azerbaijan province, which lies between Marand and Jolfa cities, northwestern of Iran, and its groundwater resources are developed for water supply and irrigation purposes. The main lithologic units consist chiefly of limestone, dolomite, shale, conglomerate, marl, and igneous rocks. In order to evaluate the quality of groundwater in study area, 36 samples were collected and analyzed for various ions. Chemical indexes like sodium adsorption ratio, percentage of sodium, residual sodium carbonate, and permeability index were calculated. Based on the analytical results, groundwater in the area is generally very hard, brackish, high to very high saline and alkaline in nature. The abundance of the major ions is as follows: Cl −  >HCO\(_{3}^{\;\,-}>\)SO\(_{4}^{\;\,2-}\) and Na +  >Ca2 +  >Mg2 +  >K + . The dominant hydrochemical facieses of groundwater is Na − Cl type, and alkalis (Na + , K + ) and strong acids (Cl − , SO\(_{4}^{\;\,2-})\) are slightly dominating over alkali earths (Ca2 + , Mg2 + ) and weak acids (HCO\(_{3}^{\;\,-}\), CO\(_{3}^{\;\,2-})\). The chemical quality of groundwater is related to the dissolution of minerals, ion exchange, and the residence time of the groundwater in contact with rock materials. The results of calculation saturation index by computer program PHREEQC shows that nearly all of the water samples were supersaturated with respect to carbonate minerals (calcite, dolomite and aragonite) and undersaturated with respect to sulfate minerals (gypsum and anhydrite). Assessment of water samples from various methods indicated that groundwater in study area is chemically unsuitable for drinking and agricultural uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghazadeh, N. (2004). Hydrogeological consideration of the Harzandat plain aquifer and preparing of its mathematical model (in Persian). Iran: M.S. Thesis, University of Tabrze.

  • Aghazadeh, N., & Mogaddam, A. A. (2004). Evaluation effect of geological formation on groundwater quality in the Harzandat plain aquifer (in Persian). Symposium of Geosciences of Iran, 22, 392–395.

    Google Scholar 

  • APHA (1995). Standard methods for the examination of water and wastewater (19th ed., p. 467). Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution (p. 536). Rotterdam: Balkema.

    Google Scholar 

  • Asghari Moghaddam, A., & Aghazadeh, N. (2006). Hydrogeological consideration of the Harzandat Plain aquifer of its mathematical model (in Persian). Agricultural Science, Scientific Journal of Faculty of Agriculture, University of Tabriz, 16(1), 73–82.

    Google Scholar 

  • Asghari Moghaddam, A., & Najib, A. (2006). Hydrogeologic characteristics of the alluvial tuff aquifer of northern Sahand Mountain slopes, Tabriz, Iran. Hydrogeology Journal, 14, 1319–1329.

    Article  CAS  Google Scholar 

  • Arumugam, K., & Elangovan, K. (2009). Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environmental Geology, 58, 1509–1520.

    Article  CAS  Google Scholar 

  • Ayenew, T., Demlie, M., & Wohnlich, S. (2008). Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. Journal of African Earth Sciences, 52, 97–113.

    Article  CAS  Google Scholar 

  • Azerbaijan Regional Water Authority (2004). Evaluation of groundwater in Harzandat plain (in Persian). Tabriz: Azerbaijan Regional Water Authority.

    Google Scholar 

  • Cerling, T. E., Pederson, B. L., & Damm, K. L. V. (1989). Sodium calcium ionexchange in weathering of shale; implication for global weathering. Budget, 17, 552–554.

    CAS  Google Scholar 

  • Chkirbenea, A., Tsujimurab, M., Charefa, A., & Tanakab, T. (2009). Hydro-geochemical evolution of groundwater in an alluvial aquifer: Case of Kurokawa aquifer, Tochigi prefecture, Japan. Desalination, 246, 485–495.

    Article  Google Scholar 

  • Coetsiers, M., & Walraevens, K. (2006). Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeology Journal, 14, 1556–1568.

    Article  CAS  Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal of Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (p. 824). New York: John Wiley and sons.

    Google Scholar 

  • Drever, J. I. (1997). The Geochemistry of natural waters (p. 436). New Jersey: Prentice- Hall.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonate in irrigation water. Soil Science, 69(2), 123–133.

    Article  CAS  Google Scholar 

  • Fisher, R. S., & Mullican, F. W. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA. Hydrogeology Journal, 10(4), 455–474.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Garrels, R., & Mackenzie, F. (1967). Origin of the chemical compositions of some springs and lakes. In R. F. Ground (Ed.), Equilibrium concepts in natural water systems. Washington: American Chemical Society Publications.

    Google Scholar 

  • Giridharan, L., Venugopal, T., & Jayaprakash, M. (2008). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environmental Monitoring and Assessment, 143, 161–178.

    Article  CAS  Google Scholar 

  • Guler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells –Owens Valley area, southeastern California, USA. Journal of Hydrology, 285, 177–198.

    Article  CAS  Google Scholar 

  • Guler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  CAS  Google Scholar 

  • Han, D., Liang, X., Jin, M., Currell, M. J., Han, Y., & Song, X. (2009). Hydrogeochemical indicators of groundwater flow systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China. Environmental Management, 44, 243–255.

    Article  Google Scholar 

  • Haritash, A. K., Kaushik, C. P., Kaushik, A., Kansal, A., & Yadav, A. K. (2008). Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environmental Monitoring and Assessment, 145, 397–408.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1970). Study and interpretation of the chemical characteristics of natural water. Water-supply paper - Geological Survey (U.S.), 1473, 363.

  • Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah Basin in Western Iran. Environmental Monitoring and Assessment, 130, 347–364.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment, development and management (p. 720). New Delhi: Tata McGraw Hill.

    Google Scholar 

  • Khazaei, E., Stednick, J. D., Sanford, W. E., & Warner, J. W. (2006). Hydrochemical changes over time in the Zahedan aquifer, Iran. Environmental Monitoring and Assessment, 114, 123–143.

    Article  CAS  Google Scholar 

  • Kortatsi, B. K. (2007). Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquatic Geochemistry, 13, 41–74.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006) Identification and evaluation of hydrogeochemical process in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry (p. 601). Prentice Hall, Inc.

  • Nabavi, M. H. (1976). Preface geology of Iran (in Persian). Geology Survey Iran.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (ver. 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGeol. Surv. Water-Resources Invest. Rept, 99–4259.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions - American Geophysical Union, 25, 914–923.

    Google Scholar 

  • Ragunath, H. M. (1987). Groundwater (p. 563). New Delhi: Wiley.

    Google Scholar 

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhara Pradesh, South India. Environmental Geology, 52, 1067–1074.

    Article  CAS  Google Scholar 

  • Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna river basin, Varanasi district, Uttar Pradesh. Journal Geological Society of India, 73, 178–192.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils: Agriculture, vole 160. Handbook 60. Washington DC: US Department of Agriculture.

    Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Dill, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga- Brahmaputr river system: Weathering processes and fluxes to the Bay of Bengal. Geochemical Cosmochimica Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Sastri, J. C. V. (1994). Groundwater chemical quality in river basins, hydrogeochemical facies and hydrogeochemical modeling. Lecture notes—refresher course conducted by school of Earth Sciences. Thiruchirapalli, Tamil Nadu, India: Bharathidasan University.

    Google Scholar 

  • Sawyer, G. N., & McCartly, D. L. (1967). Chemistry of sanitary engineers (2nd ed., p. 518). New York: McGraw Hill.

    Google Scholar 

  • Schoeller, H. (1977). Geochemistry of groundwater. In Groundwater studies-An International guide for research and practice (Ch. 15, pp. 1–18). Paris: UNESCO.

    Google Scholar 

  • Srinivasa Gowd, S. (2005). Assessment of groundwater quality for drinking and irrigation purpose: A case study of Peddavanka watershed, Anantapur District, Andhra Pradesh, India. Environmental Geology, 48, 702–712.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53, 1509–1528.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon River—the influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J. (1989). Nonpoint source of trace element in potable groundwater in Netherland. In Proceedings of the 18th TWSA Water Working, Testing and Research Institute. Nieuwegein: KIWA.

    Google Scholar 

  • Subba Rao, N. (2008). Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138, 327–341.

    Article  CAS  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • Tayfur, G., Kirer, T., & Baba, A. (2008). Groundwater quality and hydrogeochemical properties of Torbali Region, Izmir, Turkey. Environmental Monitoring and Assessment, 146, 157–169.

    Article  CAS  Google Scholar 

  • US Salinity Laboratory (1954). Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No. 60 (p. 160). USDA.

  • WHO (1989). Health Guidelines for the use of wastewater in Agriculture and Aquaculture. Report of a WHO Scientific Group-Technical Report Series 778 (p. 74), Geneva: World Health Organization.

  • WHO (1993). Guidelines for drinking water quality (Vol. 1, 2nd ed., p. 130). Geneva: World Health Organization, recommendations.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. Washington: USDA, Circular 969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosrat Aghazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghazadeh, N., Mogaddam, A.A. Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environ Monit Assess 176, 183–195 (2011). https://doi.org/10.1007/s10661-010-1575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1575-4

Keywords

Navigation