Skip to main content

Advertisement

Log in

Mobilization of metals and phosphorus from intact forest soil cores by dissolved inorganic carbon

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increased dissolved inorganic carbon (DIC) enhances the mobilization of metals and nutrients in soil solutions. Our objective was to investigate the mobilization of Al, Ca, Fe, and P in forest soils due to fluctuating DIC concentrations. Intact soil cores were taken from the O and B horizons at the Bear Brook Watershed in Maine (BBWM) to conduct soil column transport experiments. Solutions with DIC concentrations (∼20–600 ppm) were introduced into the columns. DIC was reversibly sorbed and its migration was retarded by a factor of 1.2 to 2.1 compared to the conservative sodium bromide tracer, corresponding to a log K D = − 0.82 to −0.07. Elevated DIC significantly enhanced the mobilization of all Al, Fe, Ca, and P. Particulate (>0.4 μm) Al and Fe were mobilized during chemical and flow transitions, such as increasing DIC and dissolved organic carbon (DOC), and resumption of flow after draining the columns. Calcium and P were primarily in dissolved forms. Mechanisms such as ion exchange (Al, Fe, Ca), ligand- and proton-promoted dissolution (Al and Fe), and ligand exchange (P) were the likely chemical mechanisms for the mobilization of these species. One column was packed with dried and sieved B-horizon soil. The effluent from this column had DOC, Al, and Fe concentrations considerably higher than those in the intact columns, suggesting that these species were mobilized from soil’s microporous structure that was otherwise not exposed to the advective flow. Calcium and P concentrations, however, were similar to those in the intact columns, suggesting that these elements were less occluded in soil particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Bruno, J., Stumm, W., Wersin, P., & Brandberg, F. (1992). On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25°C. Geochimica et Cosmochimica Acta, 56, 1139–1147.

    Article  CAS  Google Scholar 

  • Bunn, R. A., Magelky, R. D., Ryan, J. N., & Elimelech, M. (2002). Mobilization of natural colloids from an iron oxide-coated aquifer: Effect of pH and ionic strength. Environmental Science & Technology, 36, 314–322.

    Article  CAS  Google Scholar 

  • Colpaert, J. V., & Van Tichelen, K. K. (1996). Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytologist, 134, 123–132.

    Article  Google Scholar 

  • Cronan, C. S., & Schofield, C. L. (1979). Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the Northeast. Science, 204, 304–306.

    Article  CAS  Google Scholar 

  • David, M. B., & Vance, G. F. (1989). Generation of soil solution acid-neutralizing capacity by addition of dissolved inorganic carbon. Environmental Science & Technology, 23, 1021–1024.

    Article  CAS  Google Scholar 

  • Drever, J. I., & Stillings, L. L. (1996). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 120, 167–181.

    Article  Google Scholar 

  • El-Farhan, Y. H., DeNovio, N. M., Herman, J. S., & Hornberger, G. M. (2000). Mobilization and transport of soil particles during infiltration experiments in and agricultural field, Shenandoah Valley, Virginia. Environmental Science & Technology, 34, 3555–3559.

    Article  CAS  Google Scholar 

  • Faure, M.-H., Sardin, M., & Vitorge, P. (1997). Release of clay particles from an unconsolidated clay-sand core: Experiments and modeling. Journal of Contaminant Hydrology, 26, 169–178.

    Article  CAS  Google Scholar 

  • Fernandez, I. J., & Kosian, P. A. (1987). Soil air carbon dioxide concentrations in a New England spruce-fir forest. Soil Science Society of America Journal, 51, 261–263.

    Article  CAS  Google Scholar 

  • Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal, 67, 1909–1919.

    Article  CAS  Google Scholar 

  • Fox, T. R. (1995). The influence of low-molecular-weight organic acids on properties and processes in forest soils. In W. W. McFee & J. M. Kelly (Eds.), Carbon forms and functions in forest soils (pp. 43–62). Madison: SSSA.

    Google Scholar 

  • Furrer, G., & Stumm, W. (1986). The coordination chemistry of weathering: I. Dissolution kinetics of d-Al2O3 and BeO. Geochimica et Cosmochimica Acta, 50, 1847–1860.

    Article  CAS  Google Scholar 

  • Gomez-Suarez, C., Noordmans, J., van der Mei, H. C., & Busscher, H. J. (1999). Removal of colloidal particles from quartz collector surfaces as stimulated by the passage of liquid–air interfaces. Langmuir, 15, 5123–5127.

    Article  Google Scholar 

  • Grolimund, D., & Borkovec, M. (1999). Long-term release kinetics of colloidal particles from natural porous media. Environmental Science & Technology, 33, 4054–4060.

    Article  CAS  Google Scholar 

  • Holmes, B. C. (2007). Mobilization of metals and phosphorous from intact forest soil cores by dissolved inorganic carbon: A laboratory column study. Thesis, University of Maine.

  • Homann, P. S., & Grigal, D. F. (1992). Molecular weight distribution of soluble organics from laboratory-manipulated surface soils. Soil Science Society of America Journal, 56, 1305.

    Article  CAS  Google Scholar 

  • Hubbe, M. A. (1987). Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow. 4. Effect of polyelectrolytes. Colloids and Surfaces, 25, 325–339.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Zech, W. (1996). Nitrate, sulfate, and biphosphate retention in acid forest soils affected by natural dissolved organic carbon. Journal of Environmental Quality, 25, 1325–1331.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., Bertsch, P. M., Adriano, D. C., & Miller, W. P. (1993). Soil-borne mobile colloids as influenced by water flow and organic carbon. Environmental Science & Technology, 27, 1193–1200.

    Article  CAS  Google Scholar 

  • Kopáček, J., Ulrich, K. U., Hejzlar, J., Borovec, J., & Stuchlik, E. (2001). Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies. Water Research, 35, 3783–3790.

    Article  Google Scholar 

  • Liang, L., Hoffman, A., & Gu, B. (2000). Ligand-induced dissolution and release of ferrihydrite colloids. Geochimica et Cosmochimica Acta, 64, 2027–2037.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley-Interscience.

    Google Scholar 

  • Nightingale, H. I., & Bianchi, W. C. (1977). Groundwater turbidity resulting from artificial recharge. Ground Water, 15, 146–152.

    Article  Google Scholar 

  • Norton, S. A., Cosby, B. J., Fernandez, I. J., Kahl, J. S., & Church, M. R. (2001). Long-term and seasonal variations in CO2: Linkages to catchment alkalinity generation. Hydrology and Earth System Sciences, 5, 83–91.

    Article  Google Scholar 

  • Norton, S. A., Fernandez, I. J., Amirbahman, A., Coolidge, K. M., & Navratil, T. (2006). Aluminum, phosphorus, and oligotrophy—assembling the pieces of the puzzle. Proceedings of the International Society of Limnology (Verh. Internat. Verein. Limnol.), 29, 1877–1886.

    CAS  Google Scholar 

  • Ochs, M. (1996). Influence of humified and non-humified natural organic compounds on mineral dissolution. Chemical Geology, 132, 119–124.

    Article  CAS  Google Scholar 

  • Parfitt, R. L., Atkinson, R. J., & Smart, R. St. C. (1976). The mechanism of phosphate fixation by iron oxides. Soil Science Society of America Journal, 39, 839–841.

    Google Scholar 

  • Parker, J. C., & van Ganuchten, M. Th. (1984). Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station, Bulletin 84-3.

  • Pohlman, A. A., & McColl, J. G. (1988). Soluble organics from. forest litter and their role in metal dissolution. Soil Science Society of America Journal, 52, 265–271.

    Article  CAS  Google Scholar 

  • Robinson, A. B., Baliunas, S. L., Soon, W., & Robinson, Z. W. (1998). Environmental effects of increased atmospheric carbon dioxide. Petition Project, La Jolla, CA.

  • Roy, S. B., & Dzombak, D. A. (1996). Colloid release and transport processes in natural and model porous media. Colloids and Surfaces A, 107, 245–262.

    Article  CAS  Google Scholar 

  • Roy, S., Norton, S., Fernandez, I., & Kahl, J. (1999). Linkages of p and al export at high discharge at the Bear Brook Watershed in Maine. Environmental Monitoring and Assessment, 55, 133–147.

    Article  CAS  Google Scholar 

  • Ryan, J. N., & Gschwend, P. M. (1994). Effect of solution chemistry on clay colloid release from an iron oxide-coated aquifer sand. Environmental Science & Technology, 28, 1717–1726.

    Article  CAS  Google Scholar 

  • Schulthess, C. P., Swanson, K., & Wijnja, H. (1998). Proton adsorption on an aluminum oxide in the presence of bicarbonate. Soil Science Society of America Journal, 62, 136–141.

    Article  CAS  Google Scholar 

  • Seaman, J. C., & Bertsch, P. M. (2000). Selective colloid mobilization through surface-charge manipulation. Environmental Science & Technology, 34, 3749–3755.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Bertsch, P. M., & Miller, W. P. (1995). Chemical controls on colloid generation and transport in a sandy aquifer. Environmental Science & Technology, 29, 1808–1815.

    Article  CAS  Google Scholar 

  • Sherman, J., Fernandez, I. J., Norton, S. A., Ohno, T., & Rustad, L. E. (2006). Soil aluminum, iron, and phosphorous dynamics in response to long-term experimental nitrogen and sulfur at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 121, 419–427.

    Article  CAS  Google Scholar 

  • Sibanda, H. M., & Young, S. D. (1986). Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils. Journal of Soil Science, 37, 197–204.

    Article  CAS  Google Scholar 

  • Songwe, N. C., Fasehun, F. E., & Okali, D. U. U. (1997). Leaf nutrient dynamics of two tree species and litter nutrient content in Southern Bakundu Forest Reserve, Cameroon. Journal of Tropical Ecology, 13, 1–15.

    Article  Google Scholar 

  • Stumm, W. & Morgan, J. J. (1996). Aquatic chemistry, chemical equilibria and rates in natural waters (3rd ed., p. 1022). New York: Wiley.

    Google Scholar 

  • Su, C., & Suarez, D. L. (1997). In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides. Clays and Clay Minerals, 45, 814–825.

    Article  CAS  Google Scholar 

  • Swartz, C. H., & Gschwend, P. M. (1998). Mechanisms controlling release of colloids to groundwater in a southeastern coastal plain aquifer sand. Environmental Science & Technology, 32, 1779–1785.

    Article  CAS  Google Scholar 

  • Swartz, C. H., & Gschwend, P. M. (1999). Field studies of in situ colloid mobilization in a southeastern coastal plain aquifer. Water Resources Research, 352, 2213–2223.

    Article  Google Scholar 

  • Totsche, K. U., Wilcke, W., Korber, M., Kozba, J., & Zech, W. (2000). Evaluation of fluoride-induced metal mobilization in soil columns. Journal of Environmental Quality, 29, 454–459.

    Article  CAS  Google Scholar 

  • Turner, L. J., & Kramer, J. R. (1991). Sulfate ion binding on goethite and hematite. Soil Science, 152, 226.

    Article  CAS  Google Scholar 

  • van Geen, A., Robertson, A. P., & Leckie, J. O. (1994). Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters. Geochimica et Cosmochimica Acta, 58, 2073–2086.

    Article  Google Scholar 

  • Villalobos, M., & Leckie, J. O. (2000). Carbonate adsorption on goethite under closed and open CO2 conditions. Geochimica et Cosmochimica Acta, 64, 3787–3802.

    Article  CAS  Google Scholar 

  • Villalobos, M., & Leckie, J. O. (2001). Surface complexation modeling and FTIR study of carbonate adsorption to goethite. Journal of Colloid and Interface Science, 235, 15–32.

    Article  CAS  Google Scholar 

  • Wan, J., & Wilson, J. L. (1994). Colloid transport in unsaturated porous media. Water Resources Research, 30, 857–864.

    Article  CAS  Google Scholar 

  • Zinder, B., Furrer, G., & Stumm, W. (1986). The coordination chemistry of weathering II. Dissolution of Fe(III) oxides. Geochimica et Cosmochimica Acta, 50, 1861–1869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aria Amirbahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirbahman, A., Holmes, B.C., Fernandez, I.J. et al. Mobilization of metals and phosphorus from intact forest soil cores by dissolved inorganic carbon. Environ Monit Assess 171, 93–110 (2010). https://doi.org/10.1007/s10661-010-1522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1522-4

Keywords

Navigation