Skip to main content

The efficiency of Amberlite XAD-4 resin loaded with 1-(2-pyridylazo)-2-naphthol in preconcentration and separation of some toxic metal ions by flame atomic absorption spectrometry

Abstract

A selective method has been developed for the determination of trace amount of metal ions after preconcentration on 1-(2-pyridylazo)-2-naphthol loaded Amberlite XAD-4 resin. The chelating resin was characterized on the basis of infra red spectra, thermal and chemical stability, and hydrogen ion capacity. High preconcentration factor of 160–400 up to a low preconcentration limit of 10 μg L − 1 has been achieved for almost all the metals. The chelating resin was highly selective even in the presence of large concentrations of alkali and alkaline earth metals and various matrix components. Chromatographic separation of metal ions in binary mixtures has been accomplished. The analytical utility of the resin for metal ions was explored by analyzing natural water and standard reference materials.

This is a preview of subscription content, access via your institution.

References

  • Afkhami, A., & Bahram, M. (2004). H-point standard addition method for simultaneous spectrophotometric determination of Co(II) and Ni(II) by 1-(2-pyridylazo)2-naphthol in micellar media. Spectrochimica Acta A, 60, 181–186.

    Article  Google Scholar 

  • Amara, M., & Kerdjoudj, H. (2003). Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions. Application to the separation of metallic ions. Talanta, 60, 991–1001.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (1989). Standard methods for the examination of water and wastewater (17th ed.). Washington, DC: APHA.

    Google Scholar 

  • Bermejo-Barrera, P., Nancy, M. A., Cristina, D. L., & Adela, B. B. (2003). Use of Amberlite XAD-2 loaded with 1-(2-pyridylazo)-2-naphthol as a preconcentration system for river water prior to determination of Cu2 + , Cd2 + , and Pb2 +  by flame atomic absorption spectroscopy. Microchimica Acta, 142, 101–108.

    Article  CAS  Google Scholar 

  • Bjerrum, J., Schwarzenbach, G., & Sillen, G. (1958). Stability constants of metal ion complexes (Vol. 1). London: The Chemical Society.

    Google Scholar 

  • Chin, C. S., Johnson, K. S., & Coale, K. H. (1992). Spectrophotometric determination of dissolved manganese in natural waters with 1-(2-pyridylazo)-2-naphthol: Application to analysis in situ in hydrothermal plumes. Marine Chemistry, 37, 65–82.

    Article  CAS  Google Scholar 

  • Escriche, J. M., Estelles, M. L., & Reig, F. B. (1983). Spectrophotometric determination of cadmium with 1-(2-pyridylazo)-2-naphthol and non-ionic surfactants: Application to acetic acid extracts of ceramic enamels. Talanta, 30, 915–918.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., de Brito, C. F., Dantas, A. F., de Araujo, L. M. L., & Spinola Costa, A. C. (1999). Nickel determination in saline matrices by ICP-AES after sorption on Amberlite XAD-2 loaded with PAN. Talanta, 48, 1173–1177.

    Article  CAS  Google Scholar 

  • Hayes, J. A. (1989). Metal toxicity. In: J. A. Marquis (Ed.), A guide to general toxicology (2nd ed., pp. 178–179). New York: Karger.

    Google Scholar 

  • Hazer, O., Kartal, S., & Tokalioglu, S. (2009). Atomic absorption spectrometric determination of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions in water, fertilizer and tea samples after preconcentration on Amberlite XAD-1180 resin loaded with l-(2-pyridylazo)-2-naphthol. Journal of Analytical Chemistry, 64, 609–614.

    Article  CAS  Google Scholar 

  • Helfferich, F. (1962). Ion exchange. New York: McGraw-Hill.

    Google Scholar 

  • Islam, A., Laskar, M. A., & Ahmad, A. (2010). Characterization of a novel chelating resin of enhanced hydrophilicity and its analytical utility for preconcentration of trace metal ions. Talanta, 81, 1772–1780.

    Article  CAS  Google Scholar 

  • Kantipuly, C. J., Katragadda, S., Chow, A., & Gesser, H. D. (1990). Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta, 37, 491–517.

    Article  CAS  Google Scholar 

  • Kenawy, I. M. M., Hafez, M. A. H., & Lashein, R. R. (2001). Thermal decomposition of chloromethylated poly(styrene)-PAN resin and its complexes with some transition metal ions. Journal of Thermal Analysis and Calorimetry, 65, 723–736.

    Article  CAS  Google Scholar 

  • Kubová, J., Hanáková, V., Medved’, J., & Stresko, V. (1997). Determination of lead and cadmium in human hair by atomic absorption spectrometric procedures after solid phase extraction. Analytica Chimica Acta, 337, 329–334.

    Article  Google Scholar 

  • Leon-Gonzalez, M. E., & Perez-Arribas, L. V. (2000). Chemically modified polymeric sorbents for sample preconcentration. Journal of Chromatography A, 902, 3–16.

    Article  CAS  Google Scholar 

  • Li, R., Jiang, Z. T., Lin, X. H., Mao, L. Y., & Shen, H. X. (1997). β-Cyclodextrin polymer adsorbed resin phase spectrophotometric determination of copper using PAN. Analytical Letters, 30, 1685–1696.

    CAS  Google Scholar 

  • Nabi, S., Alim, A., Islam, A., & Amjad, M. (2005). Column chromatographic separation of metal ions on 1-(2-pyridylazo)-2-napthol modified Amberlite IR-120 resin. Journal of Separation Science, 28, 2463–2467.

    Article  CAS  Google Scholar 

  • Narin, I., & Soylak, M. (2003). Preparation of a chelating resin by immobilizing 1-(2-pyridylazo)-2-naphtol on Amberlite XAD-16 and its application of solid phase extraction of Ni(II), Cd(II), Co(II), Cu(II), Pb(II) and Cr(III) in natural water samples. Analytical Letters, 36, 641–658.

    Article  CAS  Google Scholar 

  • Narin, I., Soylak, M., Elci, L., & Dogan, M. (2001). Separation and enrichment of chromium, copper, nickel and lead in surface seawater samples on a column filled with Amberlite XAD-2000. Analytical Letters, 34, 1935–1947.

    Article  CAS  Google Scholar 

  • Pramanik, S., Dhara, S., Bhattacharyya, S. S., & Chattopadhyay, P. (2006). Separation and determination of some metal ions on new chelating resins containing N, N donor sets. Analytica Chimica Acta, 556, 430–437.

    Article  CAS  Google Scholar 

  • Pyrzynska, K., & Trojanowicz, M. (1999). Functionalized cellulose sorbents for preconcentration of trace metals in environmental analysis. Critical Reviews in Analytical Chemistry, 29, 313–321.

    Article  CAS  Google Scholar 

  • Rao, T. P., Praveen, R. S. & Daniel, S. (2004). Styrenedivinyl benzene copolymers: Synthesis, characterization, and their role in inorganic trace analysis. Critical Reviews in Analytical Chemistry, 34, 177–193.

    Article  CAS  Google Scholar 

  • Sabarudin, A., Lenghor, N., Oshima, M., Hakim, L. T., Takayanagi, Gao, Y. H., et al. (2007). Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta, 72, 1609–1617.

    Article  CAS  Google Scholar 

  • Sen, K. D., & Mingos, D. M. P. (1993). Chemical hardness, structure and bonding. Berlin: Springer.

    Google Scholar 

  • Sung, Y. H., & Huang, S. D. (2003). On-line preconcentration system coupled to electrothermal absorption spectrometry for the simultaneous determination bismuth, cadmium, and lead in urine. Analytica Chimica Acta, 495, 165–176.

    Article  CAS  Google Scholar 

  • Taher, M. A., Rezaeipour, E., & Afzali, D. (2004). Anodic stripping voltammetric determination of bismuth after solid-phase extraction using Amberlite XAD-2 resin modified with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Talanta, 63, 797–801.

    Article  CAS  Google Scholar 

  • Thanasarakhan, W., Liawruangrath, S., Wangkarn, S., & Liawruangrath, B. (2007). Sequential injection spectrophotometric determination of zinc(II) in pharmaceuticals based on zinc(II)-PAN in non-ionic surfactant medium. Talanta, 71, 1849–1855.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Buyukbas, H., & Kartal, S. (2006). Preconcentration of trace elements by using 1-(2-pyridylazo)-2-naphthol functionalized Amberlite XAD-1180 resin and their determination by FAAS. Journal of the Brazilian Chemical Society, 17, 98–106.

    Article  CAS  Google Scholar 

  • Tuzen, M., Narin, I., Soylak, M., & Elci, L. (2005). XAD-4/PAN solid phase extraction system for atomic absorption spectrometric determinations of some trace metals in environmental samples. Analytical Letters, 37, 473–489.

    Article  Google Scholar 

  • Welcher, F. J. (1958). The analytical uses of ethylenediaminetetraacetic acid. London: Van Nostrand.

    Google Scholar 

  • Wuilloud, R. G., Salonia, J. A., Gasquez, J. A., Olsina, R. A., & Martinez, L. D. (2000). On-line pre-concentration system for vanadium determination in drinking water using flow injection-inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 420, 73–79.

    Article  CAS  Google Scholar 

  • Yebra, M. C., Carro, N., Eenriquez, M. F., Moreno-cid, A., & Garia, A. (2001). Field sample preconcentration of copper in sea water using chelating minicolumns subsequently incorporated on a flow injection flame atomic absorption spectrometry system. Analyst, 126, 933–937.

    Article  CAS  Google Scholar 

  • Yebra, M. C., Rodríguez, L., Puig, L., & Moreno-Cid, A. (2002). Application of a field flow preconcentration system with a minicolumn packed with Amberlite XAD-4/1-(2-pyridylazo)-2-naphthol and a flow injection-flame atomic absorption spectrometric system for lead determination in sea water. Microchimica Acta, 140, 219–225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminul Islam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Islam, A., Laskar, M.A. & Ahmad, A. The efficiency of Amberlite XAD-4 resin loaded with 1-(2-pyridylazo)-2-naphthol in preconcentration and separation of some toxic metal ions by flame atomic absorption spectrometry. Environ Monit Assess 175, 201–212 (2011). https://doi.org/10.1007/s10661-010-1506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1506-4

Keywords