Environmental Monitoring and Assessment

, Volume 175, Issue 1–4, pp 175–191 | Cite as

Mercury trends in fish from rivers and lakes in the United States, 1969–2005

  • Ann T. Chalmers
  • Denise M. Argue
  • David A. Gay
  • Mark E. Brigham
  • Christopher J. Schmitt
  • David L. Lorenz
Open Access
Article

Abstract

A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996–2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969–1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain.

Keywords

Mercury Fish Trends Wet deposition Atmospheric emissions 

Supplementary material

10661_2010_1504_MOESM1_ESM.pdf (260 kb)
Supplemental Figure A (PDF 259 KB)
10661_2010_1504_MOESM2_ESM.pdf (9 kb)
Supplemental Figure B (PDF 9.42 KB)
10661_2010_1504_MOESM3_ESM.pdf (1.8 mb)
Supplemental Table A (PDF 1.75 MB)
10661_2010_1504_MOESM4_ESM.pdf (149 kb)
Supplemental Table A (PDF 99.1 KB)
10661_2010_1504_MOESM5_ESM.pdf (40 kb)
Supplemental Table B (PDF 40.1 KB)

References

  1. Allison, P. D. (1995). Survival analysis using SAS: A practical guide. Cary: SAS Institute Inc.Google Scholar
  2. Atkeson, T., Axelrad, D., Pollman, C., & Keeler, G. (2003). Integrating atmospheric mercury deposition and aquatic cycling in the Florida Everglades: An approach for conducting a total maximum daily load analysis for an atmospherically derived pollutant. Tallahassee, FL: Florida Department of Environmental Protection. http://www.floridadep.org/labs/mercury/index.htm. Accessed 15 March 2009.Google Scholar
  3. Balogh, S. J., Engstrom, D. R., Almendinger, J. E., Meyer, M. L., & Johnson, D. K. (1999). History of mercury loading in the upper Mississippi River reconstructed from sediments of Lake Pepin. Environmental Science Technology, 33, 3297–3302.CrossRefGoogle Scholar
  4. Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017.CrossRefGoogle Scholar
  5. Butler, T. J., Cohen, M. D., Vermeylen, F. M., Likens, G. E., Schmeltz, D., & Artz, R. S. (2008). Regional precipitation mercury trends in the eastern USA, 1998–2005: Declines in the northeast and midwest, no trend in the southeast. Atmospheric Environment, 42, 1582–1592.CrossRefGoogle Scholar
  6. Chen, C. Y., & Folt, C. L. (2005). High plankton densities reduce mercury biomagnification. Environmental Science and Technology, 39, 115–121.CrossRefGoogle Scholar
  7. Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, L., Niemi, D., et al. (2004). Modeling the atmospheric transport and deposition of mercury to the Great lakes. Environmental Research, 95, 247–265.CrossRefGoogle Scholar
  8. Downs, S. G., Macleod, C. L., & Lester, J. N. (1998). Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water, Air, and Soil Pollution, 108, 149–187.CrossRefGoogle Scholar
  9. Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience, 57, 17–28.CrossRefGoogle Scholar
  10. Engstrom, D. R., & Swain, E. B. (1997). Recent declines in atmospheric mercury deposition in the upper midwest. Environmental Science and Technology, 31, 960–967.CrossRefGoogle Scholar
  11. Evers, D. C., Han, Y., Driscoll, C. T., Kamman, N. C., Goodale, K., Lambert, F., et al. (2007). Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57, 29–43.CrossRefGoogle Scholar
  12. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1–7.CrossRefGoogle Scholar
  13. Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: A review. Environmental Review, 10, 1–39.CrossRefGoogle Scholar
  14. Hammerschmidt, C. R., & Fitzgerald, W. F. (2005). Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination. Environmental Science and Technology, 39, 3034–3039.CrossRefGoogle Scholar
  15. Hammerschmidt, C. R., & Fitzgerald, W. F. (2006). Methylmercury in freshwater fish linked to atmospheric deposition. Environmental Science and Technology, 40, 7764–7770.CrossRefGoogle Scholar
  16. Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H., & Tseng, C. M. (2006). Biogeochemical cycling of methylmercury in lakes and tundra watersheds of arctic Alaska. Environmental Science and Technology, 40, 1204–1211.CrossRefGoogle Scholar
  17. Harris, R. C., Rudd, J. W. M., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., et al. (2007). Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. www.pnas.org/cgi/doi/10.1073/pnas.0704186104. Accessed 23 March 2009.
  18. Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources. Amsterdam: Elsevier.Google Scholar
  19. Hinck, J. E., Bartish, T. M., Blazer, V. S., Denslow, N. D., Gross, T. S., & Myers, M. S. (2004). Biomonitoring of Environmental Status and Trends (BEST) program: Environmental contaminants and their effects on fish in the Yukon River Basin. U.S. Geological Survey Scientific Investigations Report 2004-5285. http://pubs.er.usgs.gov/usgspubs/sir/sir20045285. Accessed 15 March 2009.
  20. Hinck, J. E., Schmitt, C. J., Blazer, V. S., Denslow, N. D., Bartish, T. M., Anderson, P. J., et al. (2006a). Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: Spatial and temporal trends. Science of the Total Environment, 366, 549–578.CrossRefGoogle Scholar
  21. Hinck, J. E., Blazer, V. S., Denslow, N. D., Gross, T. S., Echols, K. R., Davis, A. P., et al. (2006b). Biomonitoring of Environmental Status and Trends (BEST) program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Colorado River basin. U.S. Geological Survey Scientific Investigations Report 2006-5163. http://pubs.usgs.gov/sir/2006/5163/pdf/SIR06-5163.pdf. Accessed 15 March 2009.
  22. Hinck, J. E., Blazer, V. S., Denslow, N. D., Echols, K. R., Gale, R. W., May, T. W., et al. (2007). Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River basins. U.S. Geological Survey Scientific Investigations Report 2007- 5176. http://pubs.usgs.gov/sir/2007/5176/. Accessed 15 March 2009.
  23. Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., et al. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science and Technology, 36, 5034–5040.CrossRefGoogle Scholar
  24. Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27(5), 803–813.CrossRefGoogle Scholar
  25. Hrabik, T. R. & Watras, C. J. (2002). Recent declines in mercury concentration in a freshwater fishery: Isolating the effects of de-acidification and decreased atmospheric mercury deposition in Little Rock Lake. Science of the Total Environment, 297, 229–237.CrossRefGoogle Scholar
  26. Kamman, N. C., & Engstrom, D. R. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb dated sediment cores. Atmospheric Environment, 36, 1599–1609.CrossRefGoogle Scholar
  27. Krabbenhoft, D. P., Branfireum, B. A., & Heyes, A. (2005). Biogeochemical cycles affecting the speciation, fate, and transport of mercury in the environment. In M. B. Parsens & J. B. Perival (Eds.), Mercury: Sources, measurements, cycles, and effects, short course series (Vol. 34, pp. 139–156). Ottawa: Mineralogical Association of Canada.Google Scholar
  28. Krabbenhoft, D. P., Engstrom, D., Gilmour, C., Harris, R., Hurley, J., & Mason, R. (2007). Monitoring and evaluating trends in sediment and water indicators. In R. Harris, D. Krabbenhoft, R. Mason, M. W. Murray, R. Reash, & T. Saltman (Eds.), Ecosystem responses to mercury contamination: Indicators of change (pp. 47–87). New York: Society of Environmental Toxicology and Chemistry (SETAC) North America Workshop on Mercury Monitoring and Assessment, CRC.CrossRefGoogle Scholar
  29. Lamborg, C. H., Fitzgerald, W. F., Damman, A. W. H., Benoit, J. M., Balcom, P. H., & Engstrom, D. R. (2002). Modern and historical atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochemical Cycles, 16(4), 1104. doi:10.1029/2001GB001847.CrossRefGoogle Scholar
  30. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., et al. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32.CrossRefGoogle Scholar
  31. Lockhart, W. L., Macdonald, R. W., Outridge, P. M., Wilkinson, P., Delaronde, J. B., & Rudd, J. W. M. (2000). Tests of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination. Science of the Total Environment, 260, 171–180.CrossRefGoogle Scholar
  32. Lorey, P., & Driscoll, C. T. (1999). Historical trends of mercury deposition in Adirondack Lakes. Environmental Science and Technology, 33, 718–722.CrossRefGoogle Scholar
  33. Lowe, T. P., May, T. W., Brumbaugh, W. G., & Kane, D. A. (1985). National Contaminant Biomonitoring Program (NCBP): Concentrations of seven elements in freshwater fish, 1978-1981. Archives of Environmental Toxicology, 14, 363–388.CrossRefGoogle Scholar
  34. Madsen, E. R., & Stern, H. S. (2007). Time trends of methylmercury in walleye in northern Wisconsin: A hierarchical bayesian analysis. Environmental Science and Technology, 41, 4568–4573.CrossRefGoogle Scholar
  35. Mahler, B. J., Van Metre, P. C., & Callender, E. (2006). Trends in metals in urban and reference lake sediments across the United States, 1970–2001. Environmental Toxicology and Chemistry, 25(7), 1698–1709.CrossRefGoogle Scholar
  36. May, T. W., & McKinney, G. L. (1981). Cadmium, lead, mercury, arsenic, and selenium concentrations in freshwater fish, 1976–77—National Pesticide Monitoring Program. Pesticides Monitoring Journal, 15(1), 14–38.Google Scholar
  37. Miller, E. K., Van Arsdale, A., Keeler, G. J., Chalmers, A., Poissant, L., Kamman, N. C., et al. (2005). Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology, 14, 53–70.CrossRefGoogle Scholar
  38. Monson, B. A. (2009). Trend reversal of mercury concentrations in piscivorous fish from Minnesota Lakes: 1982–2006. Environmental Science and Technology, 43, 1750–1755.CrossRefGoogle Scholar
  39. Norton, S. A., Evans, G. C., & Kahl, J. S. (1997). Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath Bog and to nearby Sargent Mt. Pond, Maine, USA. Water, Air, and Soil Pollution, 100, 271–286.CrossRefGoogle Scholar
  40. Orihel, D. M., Paterson, J. J., Gilmour, C. C., Bodaly, R. A., Blanchfield, P. J., Hintelmann, J., et al. (2006). Effect of loading rate on the fate of mercury in littoral mesocosms. Environmental Science and Technology, 40(19), 5992–6000.CrossRefGoogle Scholar
  41. Pacyna, E. G., & Pacyna, J. M. (2002). Global emission of mercury from anthropogenic sources in 1995. Water, Air and Soil Pollution, 137, 149–165.CrossRefGoogle Scholar
  42. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.CrossRefGoogle Scholar
  43. Perry, E., Norton, S. A., Kamman, N. C., Lorey, P. M., & Driscoll, C. T. (2005). Deconstruction of historical mercury accumulation in lake sediments, northeastern United States. Ecotoxicology, 14, 85–99.CrossRefGoogle Scholar
  44. Peterson, S. A., Sickle, J. V., Herlihy, A. T., & Hughes, R. M. (2007). Mercury concentrations in fish from streams and rivers throughout the western United States. Environmental Science and Technology, 41, 58–65.CrossRefGoogle Scholar
  45. Pirrone, N., Allegrini, I., Keeler, G. J., Nriagu, J. O., Rossmann, R., & Robbins, J. A. (1998). Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records. Atmospheric Environment, 32(5), 929–940.CrossRefGoogle Scholar
  46. Prestbo, E. M., & Gay, D. A. (2009). Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP Mercury Deposition Network (MDN). Atmospheric Environment, 43, 4223–4233.CrossRefGoogle Scholar
  47. Rasmussen, P. W., Schrank, C. S., & Campfield, P. A. (2007). Temporal trends of mercury concentrations in Wisconsin walleye (Sander vitreus), 1982–2005. Ecotoxicology, 16, 541–550.CrossRefGoogle Scholar
  48. SAS Institute, Inc (2002). SAS/STAT user’s guide (version 8.02). Cary: SAS Institute, Inc.Google Scholar
  49. Schmitt, C. J. (2002). Biomonitoring of Environmental Status and Trends (BEST) program: Environmental contaminants and their effects on fish in the Mississippi River basin. U.S. Geological Survey Biological Science Report USGS/BRD/BSR 2002–0004. http://pubs.er.usgs.gov/usgspubs/bsr/bsr020004. Accessed 15 March 2009.
  50. Schmitt, C. J., & Brumbaugh, W. G. (1990). National Contaminant Biomonitoring Program (NCBP): Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in U.S. freshwater fish, 1976–1984. Archives of Environmental Contaminant Toxicology, 19, 731–747.CrossRefGoogle Scholar
  51. Schmitt, C. J., Zajicek, J. L., May, T. W., & Cowman, D. F. (1999). Organochlorine residues and elemental contaminants in U.S. freshwater fish, 1976–1986: National Contaminant Biomonitoring Program. Reviews of Environmental Toxicology, 162, 43–104.Google Scholar
  52. Schmitt, C. J., Hinck, J. E., Blazer, V. S., Denslow, N. D., Dethloff, G. M., Bartish, T. M., et al. (2005). Environmental contaminants and biomarker responses in fish from the Rio Grande and its U.S. tributaries: Spatial and temporal trends. Science of the Total Environment, 350, 161–193.CrossRefGoogle Scholar
  53. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., DeWild, J. F., et al. (2002). Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology, 36, 2303–2310.CrossRefGoogle Scholar
  54. Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., & Scott, C. (2004). Global source attribution for mercury deposition in the United States. Environmental Science and Technology, 38, 555–569.CrossRefGoogle Scholar
  55. Slemr, F., Brunke, E., Ebinghaus, R., Temme, C., Munthe, J., Wangberg, I., et al. (2003). Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters, 30(10), 1516–1519. doi:10.1029/2003GL016954.CrossRefGoogle Scholar
  56. Simonin, H. A., Loukmas, J. J., Skinner, L. C., Roy, K. M., & Paul, E. A. (2009). Trends in mercury concentrations in New York fish. Bulletin of Environmental Contaminant Toxicology, 83, 214–218.CrossRefGoogle Scholar
  57. U.S. Environmental Protection Agency (USEPA) (2007). EPA Fact Sheet: 2005/2006 National listing of fish advisories. U.S. Environmental Protection Agency, Washington, DC, USA, EPA-823-F-07-003. http://www.epa.gov/waterscience/fish/advisories/2006/tech.pdf. Accessed 16 April 2009.
  58. USEPA (1997). Mercury Study Report to Congress. U.S. Environmental Protection Agency, Washington, D.C, USA, USEPA 452R-97-004.Google Scholar
  59. USEPA (2004). http://www.epa.gov/mercury/control_emissions/emissions.htm. Accessed 23 March 2009.
  60. USEPA (2006). National Hydrography Dataset Plus. http://www.epa.gov/waters. Accessed 23 March 2009.
  61. U. S. Geological Survey (2000). National Land Cover Data (NLCD) circa 1992, completed nationwide September 2000. http://seamless.usgs.gov/. Accessed 23 March 2009.
  62. Van Metre, P. C., Wilson, J. T., Fuller, C. C., Callender, E., & Mahler, B. J. (2004). Methods, site characteristics, and age dating of sediment cores for 56 U.S. lakes and reservoirs sampled by the USGS National Water-Quality Assessment program, 1993–2001. U.S. Geological Survey SIR 2004-5184.Google Scholar
  63. Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H., & Scheuhammer, A. M. (2003). Ecotoxicology of mercury. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology (2nd ed., pp. 409–463). Boca Raton: CRC Press.Google Scholar
  64. Wiener, J. G., Knights, B. C., Sandheinrich, M. B., Jeremiason, J. D., Brigham, M. E., Engstrom, D. R., et al. (2006). Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and ecosystem factors. Environmental Science and Technology, 40, 6261–6268.CrossRefGoogle Scholar
  65. Wiener, J. G., Bodaly, R. A., Brown, S. S., Lucotte, M., Newman, M. C., Porcella, D. B., et al. (2007). Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In R. Harris, D. P. Krabbenhoft, R. Mason, M. W. Murray, R. Reash, & T. Saltman (Eds.), Ecosystem responses to mercury contamination: Indicators of change (pp. 47–87). New York: Society of Environmental Toxicology and Chemistry (SETAC) North America Workshop on Mercury Monitoring and Assessment, CRC.Google Scholar
  66. Yang, H., Rose, N. L., Battarbee, R. W., & Boyle, J. F. (2002). Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environmental Science and Technology, 36, 1383–1388.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Ann T. Chalmers
    • 1
  • Denise M. Argue
    • 2
  • David A. Gay
    • 3
  • Mark E. Brigham
    • 4
  • Christopher J. Schmitt
    • 5
  • David L. Lorenz
    • 4
  1. 1.U.S. Geological SurveyMontpelierUSA
  2. 2.U.S. Geological SurveyPembrokeUSA
  3. 3.NADP Program OfficeIllinois State Water SurveyChampaignUSA
  4. 4.U.S. Geological SurveyMounds ViewUSA
  5. 5.U.S. Geological SurveyColumbia Environmental Research CenterColumbiaUSA

Personalised recommendations