Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 605–623 | Cite as

Empirical assessment of incorporating sediment quality triad data into a single index to distinguish dominant stressors between sites

Article

Abstract

Benthic infaunal community structure, sediment contamination, and sediment toxicity data (Sediment Quality Triad) were condensed into a single index based on the area of tri-axial plots, which were examined in relation to various habitat parameters. The purpose was to assess its utility for evaluating the relative impact of contaminants versus other stressors on benthic communities. The regression relationship between the areal index and the Effects Range–Median quotient (ERMq) was used to separate contaminant-impacted sites from sites impacted by hypoxia in Chesapeake Bay. Regression using the areal index and bottom oxygen confirm the utility of the approach. Data from Delaware, Galveston, and Biscayne Bays were also examined to determine if the approach may be effective in other estuaries.

Keywords

Sediment contamination Analysis methods Chesapeake Bay Sediment quality triad 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. W., Jones, J. M., Hameedi, J., Long, E., & Tukey, R. H. (1999). Comparative analysis of sediment extracts from NOAA’s Bioeffects Studies by the biomarker, P450 RGS. Marine Environmental Research, 48, 407–425.CrossRefGoogle Scholar
  2. APHA (American Public Health Association) (1998). P450 Reporter gene response to dioxin-like organics. Method 8070. In Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  3. ASTM (American Society for Testing and Materials) (1999). Standard guide for conducting 10-day static sediment toxicity test with marine and estuarine amphipods. Designation E-1367-92. Annual Book of Standards 11.04 (pp. 733–758). Philadelphia: American Society of Testing and Materials.Google Scholar
  4. Barrick, R., Beller, H., Becker, S., & Ginn, T. (1989). Use of the apparent effects threshold approach (AET) in classifying contaminated sediments. In Contaminated marine sediments: Assessment and remediation (pp. 64–77). Washington: National Academy Press.Google Scholar
  5. Canfield, T. J., Dwyer, F. J., Fairchild, J. F., Haverland, P. S., Ingersoll, C. G., Kemble, N. E. et al. (1996). Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach. Journal of Great Lakes Research, 22, 565–583.CrossRefGoogle Scholar
  6. Carr, R. S., & Biedenbach, J. M. (1999). Use of power analysis to develop detectable significance criteria for sea urchin toxicity tests. Aquatic Ecosystem Health and Management, 2, 413–418.CrossRefGoogle Scholar
  7. Chapman, P. M. (1996). Presentation and interpretation of sediment quality triad data. Ecotoxicology, 5, 327–339.CrossRefGoogle Scholar
  8. Chapman, P. M. (2000). The sediment quality triad: Then, now and tomorrow. International Journal of Environment and Pollution, 13, 1–6.CrossRefGoogle Scholar
  9. Chapman, P. M., & Hollert, H. (2006). Should the sediment quality triad become a tetrad, a pentad, of possibly even a hexad? Journal of Soils and Sediments, 6, 4–8.CrossRefGoogle Scholar
  10. Chapman, P. M., Dexter, R. N., & Long, E. R. (1987). Synoptic measures of sediment contamination, toxicity and infaunal community structure (the Sediment Quality Triad). Marine Ecology Progress Series, 37, 75–96.CrossRefGoogle Scholar
  11. Chapman, P. M., Anderson, B., Carr, S., Engle, V., Green, R., Hameedi, J. et al. (1997). General guidelines for using the sediment quality triad. Marine Pollution Bulletin, 34, 368–372.CrossRefGoogle Scholar
  12. Dauer, D. M., & Llansó, R. J. (2003). Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay. Environmental Management and Assessment, 81, 175–186.CrossRefGoogle Scholar
  13. Di Toro, D. M., Zarba, C. S., Hansen, D. J., Berry, W. J., Swartz, R. C., Cowan, C. E. et al. (1991). Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry, 10, 1541–1583.CrossRefGoogle Scholar
  14. Engle, V. D., Summers, J. K., & Gaston, G. R. (1994). A benthic index of enviromnental condition of Gulf of Mexico estuaries. Estuaries, 17, 372–384.CrossRefGoogle Scholar
  15. EPA (Environmental Protection Agency) (1992). Sediment classification methods compendium. EPA 823-R-92-006. Washington: Office of Water, US Environmental Protection Agency.Google Scholar
  16. EPA (Environmental Protection Agency) (1994). Methods for assessing the toxicity of sediment-associated contaminants with Estuarine and Marine Amphipods. EPA-600/R-94/025. Narragansett: Office of Research and Development, US Environmental Protection Agency.Google Scholar
  17. Fairey, R., Bretz, C., Lamerdin, S., Hunt, J., Anderson, B., Tudor, S. et al. (1996). Chemistry, toxicity and benthic community conditions in sediments of the San Diego Bay region. State of California Water Resources Control Board Final Report to NOAA. 169 p.Google Scholar
  18. Field, L. J., MacDonald, D. D., Norton, S. B., Severn, S. B., & Ingersoll, C. G. (1999). Evaluating sediment chemistry and toxicity data using logistic regression modeling. Environmental toxicology and chemistry, 18, 1311–1322.CrossRefGoogle Scholar
  19. Harmon, M., Pait, A. S., & Hameedi, M. J. (2003). Sediment contamination, toxicity, and macroinvertebrate infaunal community in Galveston Bay. NOAA Technical Memorandum NOS/NCCOS/CCMA 122. Silver Spring: National Oceanic and Atmospheric Administration, National Ocean Service.Google Scholar
  20. Hartwell, S. I. (1997). Demonstration of a toxicological risk ranking method to correlate measures of ambient toxicity and fish community diversity. Environmental Toxicology and Chemistry, 16, 361–371.CrossRefGoogle Scholar
  21. Hartwell, S. I. (1998). Biological habitat quality indicators for essential fish habitat. Workshop proceedings, 14–15 July 1997, Charleston, SC. In S. I. Hartwell (Ed.), NOAA Technical Memorandum NMFS-F/SPO-32, NOAA/NMFS, Silver Spring, MD, USA (125 p).Google Scholar
  22. Hartwell, S. I., & Claflin, L. W. (2005). Cluster analysis of contaminated sediment data—nodal analysis. Environmental Toxicology and Chemistry, 24, 816–1834.CrossRefGoogle Scholar
  23. Hartwell, S. I., & Hameedi, M. J. (2006). Habitat conditions and correlations of sediment quality triad indicators in Delaware Bay. Environmental Monitoring and Assessment, 121, 181–212.CrossRefGoogle Scholar
  24. Hartwell, S. I., & Hameedi, M. J. (2007). Magnitude and Extent of Contaminated Sediment and Toxicity in Chesapeake Bay. NOAA Technical Memorandum NOS/NCCOS/CCMA 47. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD (234 p).Google Scholar
  25. Hartwell, S. I., Hameedi, M. J., & Harmon, M. (2001). Magnitude and extent of contaminated sediment and toxicity in Delaware Bay. NOAA Technical Memorandum NOS/NCCOS/CCMA 148. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD (107 p).Google Scholar
  26. Hoffman, D. J., Rattner, B. A., Burton, G. A., Cairns, J. (eds). (2003). Handbook of ecotoxicology. Boca Raton: CRC Press (1290 pp).Google Scholar
  27. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6, 21–27.CrossRefGoogle Scholar
  28. Karr, J. R., & Chu, E. W. (1997). Biological monitoring and assessment: Using multimetric indexes effectively. EPA 325-R97-001. Washington: US Environmental Protection Agency.Google Scholar
  29. Lauenstein, G. G., & Cantillo, A. Y. (1998). Sampling and analytical methods of the National Status and Trends Program Mussel Watch Project: 1993–1996 Update. Silver Spring: National Oceanic and Atmospheric Administration, National Ocean Service.Google Scholar
  30. Llansó, R. J. (2002). Methods for calculating the Chesapeake Bay Benthic Index of Biotic Integrity. Report to Chesapeake Bay Program (27 pp). http://www.baybenthos.versar.com.
  31. Llansó, R. J., Scott, L. C., Hyland, J. L., Dauer, D. M., Russell, D. E., & Kutz, F. W. (2002). An estuarine benthic index of biological integrity for the mid-Atlantic region of the United States. II. Index development. Estuaries, 25, 1231–1242.Google Scholar
  32. Llansó, R. J., Kelly, F. S., Scott, L. C. (2004). Chesapeake Bay water quality monitoring program long-term benthic monitoring and assessment component level1 comprehensive report, July 1984–Dec. 2003 (Volume 1). Final Report to Maryland Department of Natural Resources, Annapolis, MD (88 p).Google Scholar
  33. Long, E. R. (2000). Degraded sediment quality in U.S. estuaries: A review of magnitude and ecological implications. Ecological Applications, 10, 338–349.CrossRefGoogle Scholar
  34. Long, E. R., & Morgan, L. G. (1990). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52, Seattle, WA (175 p).Google Scholar
  35. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environment & Management, 19, 81–97.CrossRefGoogle Scholar
  36. Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments and numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17, 714–727.CrossRefGoogle Scholar
  37. Long, E. R., Sloane, G. M., Scott, G. I., Thompson, B., Carr, R. S., Biedenbach, J. et al. (1999). Magnitude and extent of chemical contamination and toxicity in sediments of Biscayne Bay and vicinity. NOAA Technical Memorandum NOS/NCCOS/CCMA 141. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD (174 p).Google Scholar
  38. MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.CrossRefGoogle Scholar
  39. NOAA (National Oceanic and Atmospheric Administration) (1994). Assessment of chemical contaminants in the Chesapeake and Delaware Bays. Silver Spring: NOAA, NOS, National Status and Trends Program (32 p).Google Scholar
  40. SCBW (Symposium on the Classification of Brackish Waters) (1959). The mathematical theory of communication. Archives of oceanographic limnology 11, Supplement to Shannon, L.C. and W. Weaver (1949). Urbana: University of Illinois Press (117 pp).Google Scholar
  41. Shannon, L. C., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press, 117 p.Google Scholar
  42. Thursby, G. B., Heltshe, J., & Scott, K. J. (1997). Revised approach to toxicity test acceptability criteria using a statistical performance assessment. Environmental Toxicology and Chemistry, 16, 1322–1329.CrossRefGoogle Scholar
  43. Van Dolah, R. F., Hyland, J. L., Holland, A. F., Rosen, J. S., & Snoots, T. R. (1999). A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA. Marine Environmental Research, 48, 269–283.CrossRefGoogle Scholar
  44. Weisberg, S. B., Ranasinghe, J. A., Dauer, D. M., Schaffner, L. C., Diaz, R. J., & Frithsen, J. B. (1997). An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries, 20, 149–158.CrossRefGoogle Scholar
  45. Wenning, R. J., Batley, G. E., Ingersoll, C. G., Moore, D. W. (eds) (2005). Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Proceedings from the Pellston Workshop on Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments, 2002, Fairmont, Montana, USA (783 p).Google Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.NOAA/NOS/NCCOSCenter for Coastal Monitoring and AssessmentSilver SpringUSA

Personalised recommendations