Skip to main content

Advertisement

Log in

Temporal-spatial variability and fractal characteristics of soil nitrogen and phosphorus in Xinji District, Hebei Province, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Traditional statistics, geostatistics, fractal dimensions, and geographic information systems (GIS) were employed to study the temporal–spatial variability of soil total nitrogen (TN) and total phosphorus (TP) levels in Xinji District, Hebei Province area of the North China Plain from 1980 to 2007. The results indicate that nutrient levels follow normal or lognormal distributions. The TN content was 0.59 ±0.155 g kg − 1 in 2007, an increase of 0.44 g kg − 1 compared with that of 1980. In 2007, the TP content was 1.21 ±0.227 g kg − 1, an increase of 0.01 g kg − 1 from 1980. The geostatistical analysis showed that the distribution of these soil nutrients in the study area exhibits a trend and anisotropy. The range and [C 0/(C 0 + C)] of TN and TP in 1980 were all less than in 2007. The ordinary kriging interpolation method was used to analyze the nutrient contents differences between 1980 and 2007. The results indicate that soil TN levels have increased over the 27-year period, and the area where the TN level had increased by at least 0.4 g kg − 1 was about 61.7% of the district. The area where the TP content increased covered about 58.4% of the district. The variance analysis indicated that land-use type had a clear influence on the distribution and change in TN and TP content. Using the 3-D box-counting dimension method combined with GIS, the fractal dimension of soil nutrient spatial distribution over the two periods showed that in 27 years, the fractal dimension of TN increased from 1.95 to 2.02, and the fractal dimension of TP increased from 1.89 to 2.01, indicating that the complexity of the spatial distribution of all nutrient contents had increased. This study can provide a basis for accurate fertilizing and to enhance the conversion of soil characteristics under different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bian, L. (1997). Multi-scale nature of spatial data in scaling up environmental models. In D. A. Quattrochi & M. F. Goodchild (Eds.), Scaling in remote sensing and GIS (pp. 13–25). Boca Raton, Florida: CRC/Lewis Publishers.

  • Bird, N. R. A., Bartoli, F., Dexter, A. R. (1996). Water retention models for fractal soil structures. European Journal of Soil Science, 47, 1–6.

    Article  Google Scholar 

  • Bu, H. G., Wang, J., & Huang, X. B. (2009). Fabric defect detection based on multiple fractal features and support vector data description. Engineering Applications of Artificial Intelligence, 22, 224–235.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of American Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Haefele, S. M., & Wopereis, M. C. S. (2005). Spatial variability of indigenous supplies for N, P and K and its impact on fertilizer strategies for irrigated rice in West Africa. Plant and soil, 270(1), 57–72.

    Article  CAS  Google Scholar 

  • Hu, K. L., Li, B. G., Lin, Q. M., Li, G. T., & Chen, D. L. (1999). Spatial variability of soil nutrient in wheat field. Transactions of the Chinese Society of Agricultural Engineering, 15(3), 33–38.

    Google Scholar 

  • Hu, K. L., Xu, Y., Zhang, F. R., & Wang, R. (2006). The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 39(4), 764–771

    Google Scholar 

  • Hu, Z. Y., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31, 667–688.

    Article  Google Scholar 

  • Huang, G. H., Zhang, R. D., & Huang, Q. Z. (2006). Modeling soil water retention curve with a fractal method. Pedosphere, 16(2), 137–146.

    Article  Google Scholar 

  • Jia, X. H. (2007). Regional nutrient management at county scale-A case in Pinggu. [Dissertation for Doctoral degree] Beijing: China Agricultural University.

    Google Scholar 

  • Jiang, Y., Liang, W. J., & Zhang, Y. G. (2005). Spatial variability of soil phosphorus in field scale. Chinese Journal of Applied Ecology, 16(11), 2086–2091.

    CAS  Google Scholar 

  • Li, J., Du, Q., & Sun, C. X. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42, 2460–2469.

    Article  Google Scholar 

  • Liu, X. M., Xu, J. M., Zhang, M. K., & Zhou, B. (2004). Effects of land management change on spatial variability of organic matter and nutrients in paddy field: A case study of Pinghu, China. Environmental Management, 34(5), 691–700.

    Article  Google Scholar 

  • Liu, M. Y., Chang, Q. R., & Qi, Y. B. (2006). Fractal features of soil aggregate and microaggregate under different land use. Science of Soil and Water Conservation, 4(4), 47–51.

    CAS  Google Scholar 

  • Lü, Y. Z., Li, B. G., & Cui, Y. (2006). Micro-scale spatial variance of soil nutrients under different plant communities. Scientia Agricultura Sinica, 39(8), 1581–1588.

    Google Scholar 

  • Ma, W. Q., Mao, D. R., & Zhang, F. S. (2001). Effect of adjusting cropping system on the fertilizer consumption in China. Phosphate and Compound Fertilizer, 16(4), 1–3.

    Google Scholar 

  • Ma, Y., Taxipulati, T., Gong, L., & Lu, G. H. (2007). Spatial variability of soil trace elements in an arid watershed. Journal of Lanzhou University (Natural Sciences), 43(2), 15–19.

    CAS  Google Scholar 

  • Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension [J]. Science, 156(3775), 636–638.

    Article  CAS  Google Scholar 

  • Peitgen, H. O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals: New frontiers of science. New York: Springer.

    Google Scholar 

  • Peng, R. D., Xie, H. P., & Ju, Y. (2004). Computation method of fractal dimension for 2-D digital image. Journal of China University of Mining & Technology, 33(1), 19–24.

    Google Scholar 

  • Perfect, E., Mclaughlin, N. B., Kay, B. D., & Topp, G. C. (1996). An improved fractal equation for the soil water retention curve. Water Resources Research, 32(2), 281–287

    Article  CAS  Google Scholar 

  • Robertson, G. P., Klug, M. J., Paul, E. A., Crum, J. R., Ellis, B. G., & Klingensmith, K. M. (1997). Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 7, 158–170.

    Article  Google Scholar 

  • Stanchi, S., Bonifacio, E., & Zanini, E. (2008). Mass-size fractal dimension of primary and aggregated particles and soil profile development. Soil Science, 173(2), 87–95.

    Article  CAS  Google Scholar 

  • Su, Y. Z., Zhao, H. L., Zhao, W. Z., & Zhang, T. H. (2004). Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma, 122, 43–49.

    Article  CAS  Google Scholar 

  • Tyler, S. W., & Wheatcraft, S. W. (1989). Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 53, 987–996.

    Article  Google Scholar 

  • Tyler, S. W., & Wheatcraft, S. W. (1990). Fractal processes in soil water retention. Water Resources Research, 26(5), 1047–1054.

    Article  Google Scholar 

  • Tyler, S. W., & Wheatcraft, S. W. (1992). Fractal scaling of soil particle size distributions: Analysis and limitations. Soil Science Society of America Journal, 56(2), 362–369.

    Article  Google Scholar 

  • Veltri, M., Veltri, P., & Maiolo, M. (1996). On the fractal description of natural channel networks. Journal of Hydrology, 187, 137–144.

    Article  Google Scholar 

  • Wang, Y. N. (2003). Intelligent information processing technology. Beijing, China: Higher Education Press.

    Google Scholar 

  • Wang, J. Q., Ma, W. Q., Jiang, R. F., & Zhang, F. S. (2008). Integrated soil nutrients management and China’s food security. Resources Science, 30(3), 415–420.

    CAS  Google Scholar 

  • Wang, Y. Q., Zhang, X. C., & Huang, C. Q. (2009). Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150, 141–149.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester, UK: Wiley.

    Google Scholar 

  • Wilson, B. N., & Storm, D. E. (1993). Fractal analysis of surface drainage networks for small upland areas. Transactions of the ASAE, 36, 1319–1326.

    Google Scholar 

  • Wu, C. Z., & Hong, W. (1999). Study on fractal features of soil aggregate structure under different management patterns. Acta Paclologica Sinica, 36(2), 162–167.

    Google Scholar 

  • Xu, S. H., & Liu, J. L. (2002). Applicability of fractal models in estimating soil water retention characteristics from particle-size distribution data. Pedosphere, 12(4), 289–299.

    Google Scholar 

  • Yanai, J., Mishima, A., Funakawa, S., Akshalov, K., & Kosaki, T. (2005). Spatial variability of organic matter dynamics in the semi-arid croplands of northern Kazakhstan. Soil Science Plant Nutrient, 51(2), 261–269.

    Article  CAS  Google Scholar 

  • Yang, P. L., Luo, Y. P., & Shi, Y. C. (1993). Fractal feature of soil on expression by weight distribution of grain size. Chinese Science Bulletin, 38(20), 1896–1899.

    Google Scholar 

  • Yang, S. S., & Shao, L. Y. (2006). Estimation of fractal dimensions of images based on MATLAB. Journal of China University of Mining & Technology, 35(4), 478–482.

    Google Scholar 

  • Yang, Y. L., Tian, C. Y., Sheng, J. D., & Wen, Q. K. (2002). Spatial variability of soil organic matter, total nitrogen, phosphorus and potassium in cotton field. Agricultural Research In The Arid Areas, 20(3), 26–30.

    Google Scholar 

  • Yost, R. S., Uehara, G., & Fox, R. L. (1982). Geostatistical analysis of soil chemical properties of large land areas. I. Semi-variograms. Soil Science Society of America Journal, 46, 1028–1032.

    Article  CAS  Google Scholar 

  • Yuan, X. Y., Huang, Y. F., Gao, R. T., Chai, X. R., & He, Y. (2008). Spatial variability characteristics of farmland soil organic matter in Pinggu District, Beijing, China. Transactions of the Chinese Society of Agricultural Engineering, 24(2), 70–76.

    Google Scholar 

  • Zhang, R. D. (2004). Applied geostatistics in environmental science. North Brunswick: Science Press USA Inc.

  • Zhang, S. R., Huang, Y. F., Li, B. G., Zhang, F. R., & Hu, K. L. (2003). Temporal-spatial variability of soil nitrogen nutrients in Quzhou county, HeBei province. Acta Pedologica Sinica, 40(3), 475–479.

    Google Scholar 

  • Zhang, Y. H., Zhou, H. W., & Xie, H. P. (2005). Improved cubic covering method for fractal dimensions of a fracture surface of rock. Chinese Journal of Rock Mechanics and Engineering, 24(17), 3192–3196.

    Google Scholar 

  • Zhu, Y. Q., Li, Z. B., Lu, K. X., & Cui, L. Z. (2005). Relationship between fractal dimensions of watershed topography characteristics and grid cell size. Journal of Hydraulic Engineering, 36(3), 333–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutai Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, R., Liu, S., Zhang, Y. et al. Temporal-spatial variability and fractal characteristics of soil nitrogen and phosphorus in Xinji District, Hebei Province, China. Environ Monit Assess 174, 229–240 (2011). https://doi.org/10.1007/s10661-010-1453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1453-0

Keywords

Navigation