Environmental Monitoring and Assessment

, Volume 173, Issue 1–4, pp 653–667 | Cite as

Application of an environmental impact assessment methodology to a site discharging low levels of radioactivity to a freshwater environment in Norway

  • Ali Hosseini
  • Justin Emrys Brown
  • Mark Dowdall
  • William Standring
  • Per Strand


Significant shifts in opinion regarding environmental protection from ionising radiation have resulted in the development and availability of bespoke approaches for the assessment of impacts on wildlife from radioactive contaminants. The application of such assessment methodologies to actual situations, however, remains relatively limited. This paper describes the implementation of the ERICA Integrated Approach and associated tools within the context of routine discharges of radioactive materials to a freshwater environment. The article follows the implementation through its relevant stages and discusses strengths and weaknesses of the approach in relation to the case study. For current discharge levels, 137Cs and 60Co constitute the main dose contributors to the majority of reference organisms studied, although 241Am and 3H are the main contributors for the phyto- and zooplankton categories. Patterns are observed depending on whether the reference organism is sediment-associated or not. At current discharge levels, none of the reference organisms exceeded or approached the selected screening level, and impacts on biota could be regarded as negligible.


Environmental impact assessment Radioactivity Wildlife Freshwater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpine, A. E., & Cloern, J. E. (1988). Phytoplankton growth rates in a light-limited environment San Francisco Bay. Marine Ecology Progress Series, 44, 167–173.CrossRefGoogle Scholar
  2. Andersson, P., Garnier-Laplace, J., Beresford, N. A., Copplestone, D., Howard, B. J., Howe, P., et al. (2009). Protection of the environment from ionising radiation in a regulatory context (PROTECT): Proposed numerical benchmark values. Journal of Environmental Radioactivity, 100, 1100–1108.CrossRefGoogle Scholar
  3. Backe, S., Christensen, G. C., Raaum, A., Andreassen, S., Nystuen, L., Haugen, A.-H., et al. (2005). Discharges of radioactivity from Institute for Atomic Energy in the 1950s and 1960s, I: Proceedings of the XIV regular meeting of the Nordic Society for Radiation Protection, 27–31 August 2005, Rättvik, Sweden. Stockholm: Statens strålskyddsinstitut (SSI Rapport 2005:15).Google Scholar
  4. Beresford, N., Brown, J., Copplestone, D., Garnier-Laplace, J., Howard, B., Larsson, C.-M., et al. (2007). D ERICA: An Integrated Approach to the assessment and management of environmental risks from ionising radiation. Description of purpose, methodology and application. A deliverable report for the project “ERICA” (Contract no. FI6R-CT-2004-508847) within the EC’s VIth Framework Programme (p. 82). Stockholm: Swedish Radiation Protection Authority.Google Scholar
  5. Brown, J. E., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D., Pröhl, G., et al. (2008). The ERICA tool. Journal of Environmental Radioactivity, 99/9, 1371–1383.CrossRefGoogle Scholar
  6. Brown, J. E., Jones, S. R., Saxén, R., Thørring, H., & Vives i Batlle, J. (2004). Radiation doses to aquatic organisms from natural radionuclides. Journal of Radiological Protection, 24, A63–A77.CrossRefGoogle Scholar
  7. Brownless, G. P. (2007). Issues around radiological protection of the environment and its integration with protection of humans: Promoting debate on the way forward. Journal of Radiological Protection, 27, 391–404.CrossRefGoogle Scholar
  8. Chambers, D. B., Osborne, R. V., & Garva, A. L. (2006). Choosing an alpha radiation weighting factor for doses to non-human biota. Journal of Environmental Radioactivity, 87, 1–14.CrossRefGoogle Scholar
  9. Christensen, G., Backe, S., Krosshavn, M., Sørum, R., & Wikstrøm, V. A. (2004). Opprensking i Nitelva 2000–2001 ved fjerning av radioaktivt forurenset sediment og den del av NALFA-ledningen som var gravd ned i elveleiet. Kjeller, 2004. IFE/KR/F-2004/035 (in Norwegian).Google Scholar
  10. Copplestone, D., Jones, S., Allott, R., Merrill, P., & Vives, J. (2007). Protection of the environment from exposure to ionising radiation. Radioactivity in the Environment, 10(2007), 239–264.CrossRefGoogle Scholar
  11. Copplestone, D., Hingston, J. L., & Real, A. (2008). The development and purpose of the FREDERICA radiation effects database. Journal of Environmental Radioactivity, 99, 1456–1463.CrossRefGoogle Scholar
  12. Copplestone, D., Wood, M. D., Bielby, S., Jones, S. R., Vives, J., & Beresford, N. A. (2003). Habitat regulations for stage 3 assessments: Radioactive substances authorisations. In R&D technical report P3-101/SP1a. Bristol: Environment Agency.Google Scholar
  13. Gäfvert, T., Sværen, I., Brungot, A. L., Gwynn, J., Heldal, H. E., Kolstad, A. K., et al. (2008). Radioactivity in the Marine Environment 2006. Results from the Norwegian National Monitoring Programme (RAME). NRPA Report 2008:14 (p. 35). Østerås: Norwegian Radiation Protection Authority.Google Scholar
  14. Garnier-Laplace, J., Copplestone, D., Gilbin, R., Alonzo, F., Ciffroy, P., Gilek, M., et al. (2008). Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach. Journal of Environmental Radioactivity, 99/9, 1474–1483.CrossRefGoogle Scholar
  15. Hansen, K. T. (2000). Verneverdier i Nitelva, i Nittedal, Skedsmo og Rælingen kommuner, Akershus fylke. Verdier i Vernete Vassdrag (VVV)-rapp. 2000-5, Direktorat for Naturforvaltning, Norway (in Norwegian).Google Scholar
  16. Holm, L.-E., Hubbard, L., Larsson, C.-M., & Sundell-Bergman, S. (2002). Radiological protection of the environment from the Swedish point of view. Journal of Radiological Protection, 22, 235–247.CrossRefGoogle Scholar
  17. IAEA (1992). Effects of ionising radiation on plants and animals at levels implied by current radiation protection standards. Vienna: International Atomic Energy Agency. Technical report series no. 332.Google Scholar
  18. IAEA (2001). Generic models for use in assessing the impact of discharges of radioactive substances to the environment. IAEA Safety Reports Series, 19, 216. STI/PUB/1102.Google Scholar
  19. ICRP (1983). Radionuclide transformationsdenergy and intensity of transmissions ICRP Publication 38. Annals of the ICRP 11. Oxford: Pergamon Press.Google Scholar
  20. ICRP (1991). The 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1–3).Google Scholar
  21. ICRP (2003). A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91. Ann. ICRP 33 (3).Google Scholar
  22. ICRP (2007). Recommendations of the International Commission on Radiological 22 Protection. Publication 103. Annals of the ICRP 37 (2–3).Google Scholar
  23. ICRP (2009). Environmental protection: The concept and use of reference animals and plants. ICRP Publication 108. Annals of the ICRP, 38(4–6), 1–242.Google Scholar
  24. Larsson, C. M. (2004). The FASSET Framework for assessment of environmental impact of ionising radiation in European ecosystems – an overview. Journal of Radiological Protection, 24, A1–A13.CrossRefGoogle Scholar
  25. Larsson, C. M. (2008). An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants. Journal of Environmental Radioactivity, 99, 1364–1370.CrossRefGoogle Scholar
  26. Martinsen, T. (1997). ANØ-rapport 33/97. Avløpssambandet Nordre Øyeren. s. 1–22 (in Norwegian).Google Scholar
  27. Morris, R. C. (2006). Applying DOE’s Graded Approach for assessing radiation impacts to non-human biota at the INL. Journal of Environmental Radioactivity, 87, 77–100.CrossRefGoogle Scholar
  28. Real, A., Sundell-Bergman, S., Knowles, J. F., Woodhead, D. S., Zinger, I. (2004). Effects of ionising radiation exposure on plants, fish and mammals: Relevant data for environmental radiation protection. Journal of Radiological Protection, 24(4A), 123–137.CrossRefGoogle Scholar
  29. Rørslett, B. (1992). Øyeren i Akershus: Naturfaglig statusrapport 1992. Norsk institutt for vannforskning. s. 1–3 (in Norwegian).Google Scholar
  30. Smith, J. T. (2004). The case against protecting the environment against ionising radiation. Radioprotection, 40, s967–s972.CrossRefGoogle Scholar
  31. Sparrow, A. H., Underbrink, A. G., & Sparrow, R. C. (1967). Chromosome and cellular sensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy-nine different organisms. Radiation Research, 32, 915–945.CrossRefGoogle Scholar
  32. Strand, P., & Oughton, D. H. (Eds.) (2001). Radiation protection in the 21st century: Ethical, philosophical and environmental issues, consensus conference on protection of the environment. The Norwegian Academy of Science and Letters, 22–25 October, 2001. Oslo. Norwegian Radiation Protection Authority, Østerås and The Norwegian University of Life Sciences, Ås.Google Scholar
  33. UNSCEAR (1996). Sources and effects of ionising radiation (p. 86). New York: United Nations.Google Scholar
  34. Whicker, F. W., & Schultz, V. (1982). Radioecology: Nuclear energy and the environment (Vol. 1). Boca Raton: CRC press, Inc.Google Scholar
  35. Zinger, I., Jones, S., & Oughton, D. H. (2008). Stakeholder interaction within the ERICA integrated approach. Journal of Environmental Radioactivity, 99, 1503–1509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ali Hosseini
    • 1
  • Justin Emrys Brown
    • 1
  • Mark Dowdall
    • 1
  • William Standring
    • 1
  • Per Strand
    • 1
  1. 1.Norwegian Radiation Protection AuthorityØsteråsNorway

Personalised recommendations