Skip to main content

Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques

Abstract

This study investigates the spatial water quality pattern of seven stations located along the main Langat River. Environmetric methods, namely, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA), and the factor analysis (FA), were used to study the spatial variations of the most significant water quality variables and to determine the origin of pollution sources. Twenty-three water quality parameters were initially selected and analyzed. Three spatial clusters were formed based on HACA. These clusters are designated as downstream of Langat river, middle stream of Langat river, and upstream of Langat River regions. Forward and backward stepwise DA managed to discriminate six and seven water quality variables, respectively, from the original 23 variables. PCA and FA (varimax functionality) were used to investigate the origin of each water quality variable due to land use activities based on the three clustered regions. Seven principal components (PCs) were obtained with 81% total variation for the high-pollution source (HPS) region, while six PCs with 71% and 79% total variances were obtained for the moderate-pollution source (MPS) and low-pollution source (LPS) regions, respectively. The pollution sources for the HPS and MPS are of anthropogenic sources (industrial, municipal waste, and agricultural runoff). For the LPS region, the domestic and agricultural runoffs are the main sources of pollution. From this study, we can conclude that the application of environmetric methods can reveal meaningful information on the spatial variability of a large and complex river water quality data.

References

  • Adams, M. J. (1998). The principles of multivariate data analysis. In P. R. Ashurst & M. J. Dennis (Eds.), Analytical methods of food authentication (p. 350). London: Blackie Academic & Professional.

    Google Scholar 

  • Aiken, R. S., Leigh, C. H., Leinbach, T. R., & Moss, M. R. (1982). Development and environment in Peninsular Malaysia. Singapore: McGraw-Hill International Book Company.

    Google Scholar 

  • Alberto, W. D., Pilar, D. M. D., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., et al. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Squia River Basin (Cordoba-Argentina). Water Research, 35, 2881–2894. doi:10.1016/S0043-1354(00)00592-3.

    CAS  Article  Google Scholar 

  • Arheimer, P. V., & Swank, W. T. (2000). Nitrogen and phosphorus concentrations from agriculture catchments—Influence of spatial and temporal variables. Journal of Hydrology (Amsterdam), 227(1–4), 140–159. doi:10.1016/S0022-1694(99)00177-8.

    CAS  Article  Google Scholar 

  • Barnes, I., Kistler, R. W., Mariner, R. H., & Presser, T. H. (1981). Geochemical evidence on the nature of the basement rocks of the Sierra Nevada, California. U.S. Geological Survey Water Supply Paper, 2181.

  • Bolstad, P. V., & Swank, W. T. (1997). Cumulative impacts of land use on water quality in a southern Appalachian watershed. Journal of the American Water Resources Association, 33(2), 519–534. doi:10.1111/j.1752-1688.1997.tb03529.x.

    CAS  Article  Google Scholar 

  • Brodnjak-Voncina, D., Dobcnik, D., Novic, M., & Zupan, J. (2002). Chemometrics characterization of the quality of river water. Analytica Chimica Acta, 462, 87–100. doi:10.1016/S0003-2670(02)00298-2.

    CAS  Article  Google Scholar 

  • Brown, S. D., Blank, T. B., Sum, S. T., & Weyer, L. G. (1994). Chemometrics. Analytical Chemistry, 66, 315R–359R. doi:10.1021/ac00084a014.

    Article  Google Scholar 

  • Brown, S. D., Skogerboe, R. K., & Kowalski, B. R. (1980). Pattern recognition assessment of water quality data: Coal strip mine drainage. Chemosphere, 9, 265–276. doi:10.1016/0045-6535(80)90003-X.

    CAS  Article  Google Scholar 

  • Brown, S. D., Sum, S. T., & Despagne, F. (1996). Chemometrics. Analytical Chemistry, 68, 21R–61R. doi:10.1021/a1960005x.

    Article  Google Scholar 

  • Buck, O., Niyogi, D. K., & Townsend, C. R. (2003). Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution, 130, 287–299. doi:10.1016/j.envpol.2003.10.018.

    Article  Google Scholar 

  • Chapman, D. (UNESCO, WHO, and UNEP) (1992). Water quality assessment. London: Chapman & Hall.

    Book  Google Scholar 

  • Dahlgren, R. A., & Singer, M. J. (1994). Nutrient cycling in managed and non-managed oak woodland–grass ecosystems. Land, Air and Water Resources Research Paper 100028, University of California, Davis, CA.

  • Department of Environment Malaysia (DOE) (1997). Malaysia environmental quality reports, 1999. Kuala Lumpur: Ministry of Science, Technology and Environment.

  • Department of Environment Malaysia (DOE) (1999). Malaysia environmental quality reports, 1999. Kuala Lumpur: Ministry of Science, Technology and Environment.

  • Department of Irrigation and Drainage (DID) (2001). DID annual report. Kuala Lumpur.

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30, 1935–1948. doi:10.1016/0043-1354(96)00087-5.

    CAS  Article  Google Scholar 

  • Fisher, D. S., Steiner, J. L., Endale, D. M., Stuedemann, J. A., Schomberg, H. H., & Wilkinson, S. R. (2000). The relationship of land use practices to surface water quality in the Upper Oconee Watershed of Georgia. Forest Ecology and Management, 128, 39–48. doi:10.1016/S0378-1127(99)00270-4.

    Article  Google Scholar 

  • Forina, M., Armanino, C., & Raggio, V. (2002). Clustering with dendograms on interpretation variables. Analytica Chimica Acta, 454, 13–19. doi:10.1016/S0003-2670(01)01517-3.

    CAS  Article  Google Scholar 

  • Frenzel, S. A., & Couvillion, C. S. (2002). Fecal-indicator bacteria in streams along gradient of residential development. Journal of the American Water Resources Association, 38, 265–273. doi:10.1111/j.1752-1688.2002.tb01550.x.

    Article  Google Scholar 

  • Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Journal of Environmental Management, 74, 31–42.

    CAS  Google Scholar 

  • Ha, S. R., & Bae, M.-S. (2001). Effects of land use and municipal wastewater treatment changes on stream water quality. Water, Air, and Soil Pollution, 70, 135–151.

    CAS  Google Scholar 

  • Hashim, D. (2001). Water pollution control in Malaysia—A regulator’s perspective. Paper Presented in the Seminar on World Day for Water, 23–24 March 2001, Batu Pahat, Johor.

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evaluation of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34, 807–816. doi:10.1016/S0043-1354(99)00225-0.

    CAS  Article  Google Scholar 

  • Hill, A. R. (1978). Factors affecting the export of nitrate-nitrogen from drainage basins in southern Ontario. Water Research, 12, 1045–1057. doi:10.1016/0043-1354(78)90050-7.

    CAS  Article  Google Scholar 

  • Hill, A. R. (1981). Stream phosphorus exports from watersheds with contrasting land uses in southern Ontario. Water Resources Bulletin, 17(3), 627–634.

    CAS  Google Scholar 

  • Holloway, J. M., & Dahlgren, R. A. (2001). Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. Journal of Hydrology (Amsterdam), 250, 106–121. doi:10.1016/S0022-1694(01)00424-3.

    CAS  Article  Google Scholar 

  • Idris, A., Mamun, A. A., Mohd, A. M. S., & Wan, N. A. S. (2003). Review of water quality standards and practices in Malaysia. Pollution Research, 22(1), 145–155.

    Google Scholar 

  • Johnson, L. B., & Gage, S. H. (1997). Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology, 37, 113–132. doi:10.1046/j.1365-2427.1997.00156.x.

    Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (3rd ed.). Prentice-Hall Int.: New Jersey.

    Google Scholar 

  • Juahir, H., Ekhwan, T. M., Zain, S. M., Mokhtar, M., Zaihan, J., & Ijan Khushaida, M. J. (2008). The use of chemometrics analysis as a cost-effective tool in sustainable utilisation of water resources in the Langat River Catchment. American-Eurasian Journal of Agricultural & Environmental Sciences, 4(1), 258–265.

    Google Scholar 

  • Juahir, H., Sharifuddin, M., Zain, M., Toriman, E., & Mokhtar, M. (2004). Use of artificial neural network in the prediction of water quality index of Langat River Basin. Malaysia. Jurnal Kejuruteraan Awam, 16(22), 42–55.

    Google Scholar 

  • Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582, 390–399. doi:10.1016/j.aca.2006.09.006.

    CAS  Article  Google Scholar 

  • Kim, J.-O., & Mueller, C. W. (1987). Introduction to factor analysis: What it is and how to do it. Quantitative applications in the social sciences series. Newbury Park: Sage University Press.

    Google Scholar 

  • Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river classification. Water Research, 40, 744. doi:10.1016/j.watres.2005.11.042.

    CAS  Article  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89. doi:10.1016/S0048-9697(02)00683-6.

    CAS  Article  Google Scholar 

  • Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical data by the use of cluster analysis. New York: Wiley.

    Google Scholar 

  • Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1997). Handbook of chemometrics and qualimetrics: Data handling in science and technology (Parts A and B, Vols. 20A and 20B). Elsevier: Amsterdam.

    Google Scholar 

  • McFarland, A. M., & Hauck, S. L. (1999). Relating agricultural land uses to in-stream stormwater quality. Journal of Environmental Quality, 28(2), 836–844.

    CAS  Article  Google Scholar 

  • McKenna, J. E., Jr. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling & Software, 18(2), 205–220. doi:10.1016/S1364-8152(02)00094-4.

    Article  Google Scholar 

  • Neill, M. (1989). Nitrate concentrations in river waters in the south-east of Ireland and their relationship with agricultural practice. Water Research, 23, 1339–1355. doi:10.1016/0043-1354(89)90073-0.

    CAS  Article  Google Scholar 

  • Osborne, L. L., & Wiley, M. J. (1988). Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management, 26, 9–27.

    Google Scholar 

  • Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry. Wenheim: Wiley-VCH.

    Google Scholar 

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2007). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring Assessment, 140, 43–59.

    Article  Google Scholar 

  • Reghunath, R., Murthy, S. T. R., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36, 2437–2442. doi:10.1016/S0043-1354(01)00490-0.

    CAS  Article  Google Scholar 

  • Rosnani, I. (2001). River water quality status in Malaysia. In Proceedings national conference on sustainable river basin management in Malaysia, 13–14 November 2000, Kuala Lumpur, Malaysia.

  • Schlosser, I. J., & Karr, J. R. (1981). Water quality in agricultural watersheds: Impact of riparian vegetation during base flow. Water Resources Bulletin, 17, 233–240.

    Google Scholar 

  • Shah, A. H. H., Hadi, A. S., & Jahi J. M. (2002). Lembangan Langat Sebagai Pentas Kehidupan. In M. Mokhtar, Shaharudin Idrus, Ahmad Fariz Mohamed, Abdul Hadi Harman Shah, & Sarah Aziz (Eds.), Langat Basin research symposium 2001. Proceedings of the 2001 Langat Basin research symposium (pp. 9–20). Institut Alam Sekitar dan Pembangunan (LESTARI).

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475. doi:10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Envirometric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905. doi:10.1007/s00216-002-1559-5.

    CAS  Article  Google Scholar 

  • Simeonov, V., Stefanov, S., & Tsakovski, S. (2000). Environmetrical treatment of water quality survey data from Yantra River, Bulgaria. Mikrochimica Acta, 134, 15–21. doi:10.1007/s006040070047.

    CAS  Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124. doi:10.1016/S0043-1354(03)00398-1.

    CAS  Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992. doi:10.1016/j.watres.2004.06.011.

    CAS  Article  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta, 35, 3581–3592.

    Google Scholar 

  • Siwar, C., Shah, A. H. H., Hadi, A. S., Mohamed, A. F., & Idrus, S. (2004). Socioeconomic status and transformation of households in Langat Basin. In M. Mokhtar, Shaharudin Idrus & Sarah Aziz (Eds.), Ecosystem health of the Langat Basin. Proceedings of the 2003 research symposium on ecosystem of The Langat Basin (pp. 23–43). Institut Alam Sekitar dan Pembangunan (LESTARI).

  • Tufford, D. L., McKellar, H. N., & Hussey, J. R. (1998). In-stream non-point source nutrient predictions with land-use proximity and seasonality. Journal of Environmental Quality, 27, 100–111.

    CAS  Article  Google Scholar 

  • Universiti Malaya Consultancy Unit (UPUM) (2002). Final report program Pencegahan dan Peningkatan Kualiti Air Sungai Langat. Kuala Lumpur.

  • U.S. Geological Survey (USGS) (1999). The quality of our nation’s waters-nutrients and pesticides. U.S. Geological Survey Circular 1225.

  • U.S. Geological Survey (USGS) (2007). Water quality in the Upper Anacostia River, Maryland: Continuous and discrete monitoring with simulations to estimate concentrations and yields, 2003–05. Scientific Investigations Report 2007-5142, USGS, Virginia.

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592. doi:10.1016/S0043-1354(98)00138-9.

    CAS  Article  Google Scholar 

  • Wahl, M. H., McKellar, H. N., & Williams, T. M. (1997). Patterns of nutrient loading in forested and urbanized coastal streams. Journal of Experimental Marine Biology and Ecology, 213, 111–131. doi:10.1016/S0022-0981(97)00012-9.

    CAS  Article  Google Scholar 

  • Willet, P. (1987). Similarity and clustering in chemical information systems. New York: Research Studies Press, Wiley.

    Google Scholar 

  • Yusoff, M. K., & Haron, A. R. (1999). Water quality status of Air Hitam forest reserve. Pertanika Journal of Tropical Agricultural Science, 22(1), 127–129.

    Google Scholar 

  • Yusoff, M. K., Ramli, M. F., Juahir, H., Mustapha, S., Ismail, M. R., Mat Perak, Z., et al. (2006). Relationship between suspended solids and turbidity of river in forested catchment. Malayan Forester, 69(1), 155–162.

    Google Scholar 

  • Zampella, R. A. (1995). Characterization of surface water quality along a watershed disturbance gradient. Water Resources Bulletin, 30, 605–611.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hafizan Juahir.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Juahir, H., Zain, S.M., Yusoff, M.K. et al. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ Monit Assess 173, 625–641 (2011). https://doi.org/10.1007/s10661-010-1411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1411-x

Keywords

  • Environmetric
  • Water quality
  • Cluster analysis
  • Discriminant analysis
  • Principal component analysis
  • Factor analysis