Skip to main content
Log in

Long-term use of galvanized steel in external applications. Aspects of patina formation, zinc runoff, barrier properties of surface treatments, and coatings and environmental fate

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Galvanized steel structures are used in a large variety of external constructions in the modern urban society, and their beneficial properties from a corrosion and oxidation perspective are well known. Less investigated is the extent of their contribution to the diffuse dispersion of zinc in the society and also to the environmental fate of corrosion-induced released zinc. This paper presents long-term runoff rates of zinc from galvanized steel surfaces with main focus on hot-dipped galvanized steel exposed for up to 10 years at nonsheltered urban atmospheric conditions. The long-term capacities of a naturally formed patina and the presence of surface treatments and coatings to hinder and reduce corrosion-induced zinc runoff from galvanized steel are elucidated. The environmental interaction of zinc runoff and concrete surfaces in pavement and urban storm drain systems is highlighted and the high capacity of concrete to retain released zinc presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahar, B., Herting, G., Odnevall Wallinder, I., Hakkila, K., Leygraf, C., & Virta, M. (2008). The interaction between concrete and pavement and corrosion-induced copper runoff from buildings. Environmental Monitoring and Assessment, 140, 175–189.

    Article  CAS  Google Scholar 

  • Belghazi, A., Bohm, S., Sullivan, J. H., & Worsley, D. A. (2002). Zinc runoff from organically coated galvanised architectural steel. Corrosion Science, 44, 1639–1653.

    Article  CAS  Google Scholar 

  • Bertling, S., Odnevall Wallinder, I., Leygraf, C., & Berggren, D. (2002). Environmental effects of zinc runoff from roofing materials—a new multidisciplinary approach. In H. E. Townsend (Ed.), Outdoor atmospheric corrosion, ASTM STP 1421 (pp. 200–215). West Conshohocken: American Society for Testing and Materials.

  • Bertling, S., Odnevall Wallinder, I., Leygraf, C., & Berggren Kleja, D. (2006). Occurrence and fate of corrosion-induced zinc in runoff water from external structures. Science of the Total Environment, 367, 908–923.

    Article  CAS  Google Scholar 

  • Bucca, M., Dietzel, M., Tang, J., Leis, A., & Köhler, S. J. (2009). Nucleation and crystallization of otavite, witherite, calcite, strontianite, hydrozincite, and hydrocerussite by CO2 membrane diffusion technique. Chemical Geology, 266, 143–156. doi:10.1016/j.chemgeo.2009.06.002.

    Article  Google Scholar 

  • Cramer, S. D., & McDonald, L. G. (1990). Atmospheric factors affecting the corrosion of zinc, galvanized steel, and copper. In R. Baboian & S. W. Dean (Eds.), Corrosion testing and evaluation: Silver anniversary volume, ASTM STP 1000 (pp. 241–259). Philadelphia: American Society for Testing and Materials.

    Chapter  Google Scholar 

  • Faller, M., & Reiss, D. (2005). Runoff behaviour of metallic materials used for roofs and facades—a 5-year field exposure study in Switzerland. Materials and Corrosion, 56(4), 244–249.

    Article  CAS  Google Scholar 

  • Graedel, T. E. (1989). Corrosion mechanisms for zinc exposed to the atmosphere. Journal of the Electrochemical Society, 136(4), 193–203.

    Article  Google Scholar 

  • Gromaire, M. C., Chebbo, G., & Constant, A. (2002). Impact of zinc roofing on urban runoff pollutant loads: The case of Paris. Water Science and Technology, 45(7), 113–122.

    CAS  Google Scholar 

  • Grundmeier, G., Schmidt, W., & Stratmann, M. (2000). Corrosion protection by organic coatings: Electrochemical mechanism and novel methods of investigation. Electrochemica Acta, 45, 2515–2533.

    Article  CAS  Google Scholar 

  • Hales, M. C., & Frost, R. L. (2007). Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron, 26, 4955–4962.

    Article  CAS  Google Scholar 

  • Hazan, J., Coddet, C., & Keddam, M. (1990). Study of chromate coatings on zinc by means of D.C, A.C and gravimetric methods in alkaline electrolyte—correlation to humid-storage test and to Cr VI content of the conversion film. Corrosion Science, 31, 313–318.

    Article  CAS  Google Scholar 

  • He, W., Odnevall Wallinder, I., & Leygraf, C. (2001a). A comparison between corrosion rates and runoff rates from new and aged copper and zinc as roofing material. Water, Air and Soil Pollution: Focus, 1, 67–82.

    Article  CAS  Google Scholar 

  • He, W., Odnevall Wallinder, I., & Leygraf, C. (2001b). A laboratory study of cupper and zinc runoff during first flush and steady-state conditions. Corrosion Science, 43, 127–146.

    Article  CAS  Google Scholar 

  • He, W., Odnevall Wallinder, I., & Leygraf, C. (2002). Runoff rates of zinc—a four year field and laboratory study. In H. E. Townsend (Ed.), Outdoor atmospheric corrosion ASTM STP 1421 (pp. 216–229). West Conshohocken: American Society for Testing and Materials.

    Chapter  Google Scholar 

  • Heijerick, D. G., Janssen, C. R., Karlén, C., Odnevall Wallinder, I., & Leygraf, C. (2002). Bioavailability of zinc in the runoff water from roofing materials. Chemosphere, 47, 1073–1080.

    Article  CAS  Google Scholar 

  • Hirn, A. (1994). Hot dipped galvanizing—a study of the excess zinc run-off and the coating adherence. Licentiate thesis, Stockholm, Sweden, ISRN KTH/MSE-Met/R-SE.

  • Hosseini, S. H., & Forssberg, E. (2006). XPS & FTIR study of adsorption characteristics using cationic and anionic collectors on smithsonite. Journal of Minerals & Materials Characterization & Engineering, 5(1), 21–45.

    Google Scholar 

  • Hörnström, S. E., Hedlund, E. G., Klang, H., Nilsson, J. O., & Backlund, M. (1993). Surface study of a chromate pretreatment before coil coating of Al-43.4Zn-1.6Si coated steel. Surface and Interface Analysis, 20(5), 427–433.

    Article  Google Scholar 

  • International Organization for Standardization. ISO Standard 9226 (1992). Corrosion of metals and alloys—corrosivity of atmospheres—determination of corrosion rate of standard specimens for the evaluation of corrosivity. http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16858. Accessed 19 August 2009.

  • Jouen, S., Hannoyer, B., Barbier, A., Kasperek, J., & Jean, M. (2004). A comparison of runoff rates between Cu, Ni, Sn and Zn in the first steps of exposition in a French industrial atmosphere. Materials Chemistry and Physics, 85, 73–80.

    Article  CAS  Google Scholar 

  • Karlén, C., Odnevall Wallinder, I., Heijerick, D., Leygraf, C., & Janssen, C. R. (2001). Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion. The Science of the Total Environment, 277, 169–180.

    Article  Google Scholar 

  • Lehmann, B. (1995). Freiwitterungsverhalten von Dächern mit Metalldeckung, Untersuchung zur Zinkabgabe von Dackdeckungen mit Titanzink. Dissertation, Universität von Hannover.

  • Leuenberger-Minger, A. U., Faller, M., & Richner, P. (2002). Runoff of copper and zinc caused by atmospheric corrosion. Materials and Corrosion, 53, 157–164.

    Article  CAS  Google Scholar 

  • Matthes, S. A., Cramer, S. D., Bullard, S. J., Covino, B. S., Covino B. S. Jr, & Holcomb, G. R. (2003). Atmospheric corrosion and precipitation runoff from zinc and zinc alloy surfaces. NACE Corrosion Conference 2003, San Diego, CA (US), Paper No. 3598.

  • Odnevall, I., & Leygraf, C. (1994a). The formation of Zn4SO4(OH)6·4H2O in a rural atmosphere. Corrosion Science, 36(6), 1077–1091.

    Article  CAS  Google Scholar 

  • Odnevall, I., & Leygraf, C. (1994b). The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere. Corrosion Science, 36(9), 1551–1567.

    Article  CAS  Google Scholar 

  • Odnevall, I., & Leygraf, C. (1994c). Reaction sequences in atmospheric corrosion of zinc. In W. W. Kirk & H. H. Lawson (Eds.), Atmospheric corrosion ASTM STP 1239. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • Odnevall Wallinder, I., Verbiest, P., He, W., & Leygraf, C. (1998). The influence of patina age and pollutant levels on the runoff rate of zinc from roofing materials. Corrosion Science, 40(11), 1977–1998.

    Article  Google Scholar 

  • Odnevall Wallinder, I., Verbiest, P., He, W., & Leygraf, C. (2000). Effects of exposure direction and inclination on the runoff rates of zinc and copper roofs. Corrosion Science, 42, 1471–1487.

    Article  Google Scholar 

  • Odnevall Wallinder, I., Leygraf, C., Karlén, C., Heijerick, D., & Janssen, C. R. (2001). Atmospheric corrosion of zinc-based materials: Runoff rates, chemical speciation and ecotoxicity effects. Corrosion Science, 43, 809–816.

    Article  Google Scholar 

  • Odnevall Wallinder, I., Hedberg, Y., & Dromberg, P. (2009). Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation. Water Research, 43, 5031–5038.

    Article  CAS  Google Scholar 

  • Oesch, S., & Faller, M. (1997). Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science, 39(9), 1505–1530.

    Article  CAS  Google Scholar 

  • Prosek, T., & Thierry, D. (2004). A model for the release of chromate from organic coatings. Progress in Organic Coatings, 49, 209–217.

    Article  CAS  Google Scholar 

  • Robert-Sainte, P., Gromaire, M. C., De Gouvello, B., Saad, M., & Chebbo, G. (2009). Annual metallic flows in roof runoff from different materials: Test-bed scale in Paris Conurbation. Environmental Science and Technology, 43, 5612–5618.

    Article  CAS  Google Scholar 

  • Sandberg, J., Odneval Wallinder, I., Leygraf, C., & Le Bozec, N. (2007). Corrosion-induced zinc runoff from construction materials in a marine environment. Journal of the Electrochemical Society, 154(2), C120–C131.

    Article  Google Scholar 

  • Schriewer, A., Horn, H., & Helmreich, B. (2008). Time focused measurements of roof runoff quality. Corrosion Science, 50, 384–391.

    Article  CAS  Google Scholar 

  • Stiles, D. C., & Edney, E. O. (1989). Dissolution of zinc into thin aqueous films as a function of residence time, acidic species and pH. Corrosion, 45(11), 896–901.

    CAS  Google Scholar 

  • Stoilova, D., Koleva, V., & Vassileva, V. (2002). Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)–hydrozincite (Zn5(OH)6(CO3)2) series. Spectrochimica Acta Part A, 58, 2051–2059.

    Article  CAS  Google Scholar 

  • Strunskus, T., Fuchs, O., Weinhardt, L., Heske, C., Guraya, M., Muhler, M., et al. (2004). The valence electronic structure of zinc oxide powders as determined by X-ray emission spectroscopy: Variation of electronic structure with particle size. Journal of Electron Spectroscopy and Related Phenomena, 134(2–3), 183–189.

    Article  CAS  Google Scholar 

  • Sullivan, J. H., & Worsley, D. A. (2002). Zinc runoff from galvanized steel materials exposed in industrial/marine environment. British Corrosion Journal, 37(4), 282–288.

    Article  CAS  Google Scholar 

  • Sutton, C. M., & Reid, G. F. (2008). Measurement standards laboratory of New Zealand. Technical guide 7. Calibrating standard weights. http://msl.irl.cri.nz/training_&_resources/Technical_guides/TG07.pdf. Accessed 19 August 2009.

  • Swedish Building Standards (1984). Svensk Byggnorm, utgåva 2 (in Swedish). Stockholm, Sweden: Statens Planverks Författningsstandard. ISBN 91-38-075652.

  • Swedish EPA (2009). Swedish pollutant release and transfer register.

  • Veleva, L., Meraz, E., & Acosta, M. (2007). Zinc corrosion runoff process induced by humid tropical climate. Materials and Corrosion, 58(5), 348–352.

    Article  CAS  Google Scholar 

  • Veleva, L., Acosta, M., & Meraz, E. (2009). Atmospheric corrosion of zinc induced by runoff. Corrosion Science, 51, 2055–2062.

    Article  CAS  Google Scholar 

  • Verbiest, P., Waeterschoot, H., Racek, R., & Leclerq, M. (1997). A study of runoff and corrosion rates of rolled zinc sheet in different exposures. Protection Coatings Europe, 9, 47.

    Google Scholar 

  • Williams, L. F. G. (1977). The formation and performance of chromate conversion coatings on zinc. Surface Technology, 5, 105–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger Odnevall Wallinder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindström, D., Odnevall Wallinder, I. Long-term use of galvanized steel in external applications. Aspects of patina formation, zinc runoff, barrier properties of surface treatments, and coatings and environmental fate. Environ Monit Assess 173, 139–153 (2011). https://doi.org/10.1007/s10661-010-1377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1377-8

Keywords

Navigation