Coal cleaning residues and Fe-minerals implications

Abstract

In the present investigation, a study was undertaken to understand the origin of Fe-minerals presents in Brazilian coal mining and to understand the environmental implication and the chemical heterogeneity in the study area. Coal cleaning residue samples rich in clays, quartz, sulphides, carbonates, sulphates, etc. were sampled from Lauro Muller, Urussanga, Treviso, Siderópolis, and Criciúma cities in the Santa Catarina State and a total of 19 samples were collected and Mössbauer, XRD, SEM/EDX, and TEM analyses were conducted on the samples. The major Fe-minerals identified are represented by the major minerals chlorite, hematite, illite, and pyrite, while the minor minerals include, ankerite, chalcopyrite, goethite, hematite, jarosite, maghemite, magnetie, marcasite, melanterite, natrojarosite, oligonite, pyrrhotite, rozenite, schwertmannite, siderite, and sideronatrile. Pyrite is relatively abundant in some cases, making up to around 10% of the mineral matter in several samples. The sulphates minerals such as jarosite and others, probably represent oxidation products of pyrite, developed during exposure or storage.

This is a preview of subscription content, log in to check access.

References

  1. Banerjee, S. C. (1985). Spontaneous combustion of coal and mine fires (p. 18). Rotterdam: A.A. Balkema.

    Google Scholar 

  2. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T., & Penn, R. L. (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science (Washington, D. C.), 289(5480), 751–754.

    CAS  Article  Google Scholar 

  3. Boraha, D., Mrinal, K., & Baruahb, P. (2005). Model study of pyrite demineralization by hydrogen peroxide oxidation at 30°C in the presence of metal ions (Ni2 + , Co2 +  and Sn2 + ). Fuel Processing Technology, 86, 769–779.

    Article  Google Scholar 

  4. Bostick, B. C., & Fendorf, S. (2003). Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5), 909–921.

    CAS  Article  Google Scholar 

  5. Bostick, B. C., Fendorf, S., & Manning, B. A. (2003). Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochimica et Cosmochimica Acta, 67(5), 895–907.

    CAS  Article  Google Scholar 

  6. Chung, F. H. (1974). Quantitative interpretation of X-ray diffraction patters of mixtures: I. Matrix flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525.

    Article  Google Scholar 

  7. Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21.

    CAS  Article  Google Scholar 

  8. Ghosh, R. (1986). Spontaneous combustion of certain Indian coals—some physicochemical considerations. Fuel, 65, 1042–1046.

    CAS  Article  Google Scholar 

  9. Goodarzi, F. (2002). Mineralogy, elemental composition and modes of occurrence of elements in Canadian feed-coals. Fuel, 81, 1199–1213.

    CAS  Article  Google Scholar 

  10. Gupta, R. (2007). Advanced coal characterization: A review. Energy & Fuels, 21, 451–460.

    CAS  Article  Google Scholar 

  11. Ha, J., Hyun, T. Y., Wang, Y., Musgrave, C. B., & Brow, N. G. E. (2008). Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir, 24, 6683–6692.

    CAS  Article  Google Scholar 

  12. Haus, K. L., Hooper, R. L., Strumness, L. A., & Mahoney, J. B. (2008). Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM. Applied Geochemistry, 23, 692–704.

    CAS  Article  Google Scholar 

  13. Kaur, D., & Anderson, J. (2004). Does cellular iron dysregulation play a causative role in Parkinson’s disease. Ageing Research Reviews, 3, 327–343.

    CAS  Article  Google Scholar 

  14. Klingelhöfer, G., Morris, R. V., & Bernhardt, B. (2004). Jarosite and hematite at meridiani planum from opportunity’s Mössbauer spectrometer. Science, 306, 1740–1745.

    Article  Google Scholar 

  15. Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y., & Kato, J. (2008). Body iron metabolism and pathophysiology of iron overload. International Journal of Hematology, 88(1), 7–15.

    CAS  Article  Google Scholar 

  16. Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150–1158.

    CAS  Article  Google Scholar 

  17. Lowson, R. T. (1982). Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82(5), 461–497.

    CAS  Article  Google Scholar 

  18. Madden, M. E. E., Bodnar, R. J., & Rimstidt, J. D. (2004). Jarosite as an indicator of waterlimited chemical weathering on Mars. Nature, 431, 821–823.

    Article  Google Scholar 

  19. Misra, B. K., & Singh, B. D. (1994). Susceptibility to spontaneous combustion of Indian coals and lignites: An organic petrographic autopsy. International Journal of Coal Geology, 25, 265–286.

    CAS  Article  Google Scholar 

  20. Moses, C. O., Nordstrom, D. K., Herman, J. S., & Mills, A. L. (1987). Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6), 1561–1571.

    CAS  Article  Google Scholar 

  21. Pone, J. D. N., Hein, K. A. A., Stracher, G. B., Annegarn, H. J., Finkelman, R. B., Blake, D. R., et al. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coaldfields of South Africa. International Journal of Coal Geology, 72, 124–140.

    CAS  Article  Google Scholar 

  22. Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., et al. (2008). Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75, 93–104.

    CAS  Article  Google Scholar 

  23. Schipper, H. M. (2004). Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Research Reviews, 3, 265–301.

    CAS  Article  Google Scholar 

  24. Silva, L., Moreno, T., & Querol, Q. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.

    CAS  Article  Google Scholar 

  25. Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M. & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environmental Geochemistry and Health, 31, 475–485. doi:10.1007/s10653-008-9200-y.

    CAS  Article  Google Scholar 

  26. Stevens, J. G., Khasanov, A. M., Miller, J. W., Pollak, H., & Li, Z. (Eds.) (1998). Mössbauer mineral handbook, Mössbauer effect data centre (527 p.). University of North Carolina, Ashville, USA.

  27. Stoffregen, R. E., Alpers, C. N., & Jambor, J. L. (2000). Alunite-jarosite crystallography, thermodynamics, and geochronology. In C. N. Alpers, et al. (Ed.), Sulfate minerals: Crystallography, geochemistry, and environmental significance, reviews in mineralogy (Vol. 40, pp. 453–479). Mineralogical Society of America.

  28. Vassilev, S., Yossifova, M., & Vassileva, C. (1994). Mineralogy and geochemistry of Bobov Dol coals, Bulgaria. International Journal of Coal Geology, 26, 185–213.

    CAS  Article  Google Scholar 

  29. Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal Ash-SEM and Moessbauer results. Hyperfine Interactions, 148/149(1–4/1–4), 21–29.

    CAS  Article  Google Scholar 

  30. Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50, 135–168.

    CAS  Article  Google Scholar 

  31. Watts, R. J., Udell, M. D., Kong, S. H., & Leung, S. W. (1999). Fenton-like soil remediation catalyzed by naturally occurring iron minerals. Environmental Engineering Science, 16, 93–103.

    CAS  Article  Google Scholar 

  32. Zouboulis, A. I., Kydros, K. A., & Matis, K. A. (1993). Removal of toxic metal ions from solutions using industrial solid byproducts. Water Science and Technology, 27(10), 83–93.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis F. O. Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silva, L.F.O., Macias, F., Oliveira, M.L.S. et al. Coal cleaning residues and Fe-minerals implications. Environ Monit Assess 172, 367–378 (2011). https://doi.org/10.1007/s10661-010-1340-8

Download citation

Keywords

  • Coal residues
  • Environment
  • Health