Skip to main content
Log in

Identification of organic phosphorus compounds in the Bronx River bed sediments by phosphorus-31 nuclear magnetic resonance spectroscopy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sediment characteristics influence the distribution and bioavailability of phosphorus (P) in rivers and lakes. The objectives of this study were to identify P compounds in sediments collected from 15 sites along the Bronx River to get insights on nutrient transport for management of highly variable and modified ecosystems such as the Bronx River. The nuclear magnetic resonance spectra showed that the dominant P species in Bronx River bed sediments are orthophosphate monoester and lesser phosphate diesters and pyrophosphates (pyro-P). The P compounds were mostly glycerophosphate, nucleoside monophosphates, and polynucleotides. A few sites showed a small amount of dihydroxyacetone phosphate, inosine monophosphate. By allowing a downstream comparison of P compound variations along the Bronx River, this study provides a step toward improving water quality in an urban river system such as New York City and helps to assess the bioavailability of P, in turn, design estuary habitat restoration projects in comparable region of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgern, J., Tranvik, L., Gogoll, A., Waldeback, M., Markides, K., & Rydin, E. (2005). Sediment depth attenuation of biogenic phosphorous compounds measured by 31P NMR. Environmental Science and Technology, 39, 867–872.

    Article  Google Scholar 

  • Ahlgren, J., Reitzel, K., Danielsson, R., Gogoll, A., & Rydin, E. (2006). Biogenic phosphorus in oligotrophic mountain lake sediments: Differences in composition measured with NMR spectroscopy. Water Research, 40, 3705–3712.

    Article  CAS  Google Scholar 

  • Ahlgren, J., Brabandere, H. D., Reitzel, K., Rydin, E., Gogoll, A., & Waldeback, M. (2007). Sediment phosphorus extractants for phosphorus-31 nuclear magnetic resonance analysis: A quantitative evaluation. Journal of Environmental Quality, 36, 892–898.

    Article  CAS  Google Scholar 

  • Andersen, J. M. (1976). An ignition of method for determination of total phosphorus in lake sediments. Water Research, 10, 329–331.

    Article  CAS  Google Scholar 

  • Bartoszek, M., Polak, J., & Sulkowski, W. W. (2008). NMR study of the humification process during sewage sludge treatment. Chemosphere, 73, 1465–1470.

    Article  CAS  Google Scholar 

  • Bedrock, C. N., Cheshire, M. V., Chudek, J. A., Fraser, A. R., Goodman, B. A., & Shand, C. A. (1995). Effects of pH on precipitation of humic acid from peat and mineral soils on the distribution of phosphorus forms in humic and fulvic acid fractions. Communications in Soil Science and Plant Analysis, 26, 1411–1425.

    Article  CAS  Google Scholar 

  • Bronx River December 5 (2001) Use and standards attainment project preliminary waterbody/watershed characterization report, Bronx River. Vers. 2., BR1-BR6. Retrieved February 14, 2006 from http://www.hydroqual.com/projects/usa/allprojects/pdfs/characterization_pdfs/Bronx_River.PDF.

  • Bulter, E. (2003). Bruker biospin manual advance beginners guide version 003. Rheinstetten: Stanley, J. Niles, Bruker Biospin GmbH.

    Google Scholar 

  • Bunemann, E. K., Smernik, R. J., Marschner, P., & McNeill, A. M. (2008a). Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry, 40, 932–946.

    Article  Google Scholar 

  • Bunemann, E. K., Smernik, R. J., Doolette, A. L., Marschner, P., Stonor, R., Wakelin, S. A., et al. (2008b). Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry, 40, 1908–1915.

    Article  Google Scholar 

  • Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371.

    Article  CAS  Google Scholar 

  • Cade-Menun, B. J., Liu, C. W., Nunlist, R., & McColl, J. G. (2002). Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: Extractants, metals, and phosphorus relaxation times. Journal of Environmental Quality, 31, 457–465.

    Article  CAS  Google Scholar 

  • Cade-Menun, B. J., Navaratnam, J. A., & Walbridge, M. R. (2006). Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environmental Science and Technology, 40, 7874–7880.

    Article  CAS  Google Scholar 

  • Cade-Menun, B. J., & Preston, C. M. (1996). A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science, 161, 770–785.

    Article  CAS  Google Scholar 

  • Gadian, D. G., Radha, G. K., Richards, R. E., & Seeley, P. J. (1979). 31P NMR in living tissue: The road from a promising to an important tool in biology. In R. G. Shulman (ed.), Biological application of magnetic resonance (pp 463–535). New York: Academic.

    Google Scholar 

  • Gannon, M. (2006). Yonkers told to pay $1M in fines. The Westchester County, NY: Journal News

    Google Scholar 

  • Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.

    Article  CAS  Google Scholar 

  • Lambert, J. B., & Mazzola, E. P. (2004). Nuclear magnetic resonance spectroscopy. Upper Saddle River: Pearson.

    Google Scholar 

  • Liu, J., Wang, H., Yang, H., Ma, Y., & Cai, O. (2009). Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution, 157, 49–56.

    Article  CAS  Google Scholar 

  • Makarov, M. L., Haumaier, L., & Zech, W. (2002). Nature of soil organic phosphorus: An assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biology and Biochemistry, 34, 1467–1477.

    Article  CAS  Google Scholar 

  • Nanny, M., & Minear, R. A. (1997). Characterization of soluble unreactive phosphorus using 31P nuclear magnetic resonance spectroscopy. Marine Geology, 139, 77–94.

    Article  Google Scholar 

  • Newman, S., & Robinson, J. S. (1999). Forms of organic phosphorus in water, soils and sedimentsl. In K. R. Reddy, G. A. O’Connor, & C. L. Schelske (eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp. 207–223). London: Lewis.

    Google Scholar 

  • Nicolai, J. (2006). Supreme court of the State of New York County of Westchester. Settle order and judgment (22 NYCRR 202.48). White Plains, New York.

  • Pant, H. K., Warman, P. R., & Nowak, J. (1999). Identification of soil organic phosporus by 31P nuclear magnetic resonance spectroscopy. Communications in Soil Science and Plant Analysis, 30(5&6), 757–772.

    Article  CAS  Google Scholar 

  • Pant, H. K., & Reddy, K. R. (2001). Hydrologic influence on stability of organic phosphorus in wetland detritus. Journal of Environmental Quality, 30, 668–674.

    Article  CAS  Google Scholar 

  • Pant, H. K., Reddy, K. R., & Dierberg, F. E. (2002). Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. Journal of Environmental Quality, 31, 1748–1756

    Article  CAS  Google Scholar 

  • Pavia, D. L., Lampman, G., Kriz, G. S., & Engel, R. G. (2003). Introduction to organic laboratory techniques. Philadelphia: Saunders College.

    Google Scholar 

  • Protopapas, A. L. (1999). Combined sewer overflow abatement: The East River project. Water Resources Management, 13, 133–151.

    Article  Google Scholar 

  • Schindler, D. W. (1978). Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography, 23, 478–486.

    Article  Google Scholar 

  • Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. US EPA, Environmental sciences division national exposure research laboratory. PO Box 93478 Las Vegas, NV 89193-3478.

  • Sharpley, A. N., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In H. Tunney, O. T. Carton, P. C. Brookes, & A. E. Johnston (eds.), Phosphorus loss from soil to water (pp. 1–53). Wallingford: CAB International.

    Google Scholar 

  • Sutter, M. I., Langan, S. J., & Cooper, R. J. (2008). Spatial and temporal dynamics of stream water particulate and dissolved N, P, and C forms along a catchment transect, NE Scotland. Journal of Hydrology, 350, 187–202.

    Article  Google Scholar 

  • Taranto, M. T., Adams, M. A., Polglase, P. J., et al. (2000). Sequential fraction and characterization (31-P-NMR) of phosphorus-amended soils in Banksia integrifolia (L.f.) woodland and adjacent pasture. Soil Biology and Biochemistry, 32, 169–177.

    Article  CAS  Google Scholar 

  • Teleman, A., Richard, P., Toivari, M., & Penttila, M. (1999). Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 272, 71–79.

    Article  CAS  Google Scholar 

  • Turner, B. L. (2004). Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Journal of Environmental Quality, 33, 757–766.

    Article  CAS  Google Scholar 

  • Turner, B. L., Cade-Menun, B. J., Condron, L. M., & Newman, S. (2005). Extraction of soil organic posphorus. Talanta, 66, 294–306.

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency) (1983). Method 365.1. Methods for chemical analysis of water and wastes. Environ. Monit. Support Lab., Cincinnati, OH.

  • US EPA (US Environmental Protection Agency) (1992). ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Madison: Environmental Sciences Section Inorganic chemistry unit, Wisconsin State Lab of Hygiene.

  • USEPA (2003) Method 365.4. Determination of total phosphorus in Kjeldahl digestion by semi automated colorimetry. Brazos River Authority SOP no. BRA-007.

  • Wetzel, R. G. (1999). Organic phosphorus mineralization in soils and sediments. In: K. R. Reddy, G. A. O’Connor, & C. L. Schelske (eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp 225–245). London: Lewis.

    Google Scholar 

  • Worsfold, P. J., Monbet, P., Tappin, A. D., Fitzsimons, M. F., Stiles, D. A., & Mckelvie, I. D. (2008). Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A review. Analytica Chimica Acta, 624, 37–58.

    Article  CAS  Google Scholar 

  • Zhang, R. Y., Wu, F. Ch., Liu, C. Q., Fu, P. Q., Li, W., Wang, Li. Y., et al. (2008). Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangze River region and southwestern plateau, China. Environmental Pollution, 152, 366–372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Pant, H.K. Identification of organic phosphorus compounds in the Bronx River bed sediments by phosphorus-31 nuclear magnetic resonance spectroscopy. Environ Monit Assess 171, 309–319 (2010). https://doi.org/10.1007/s10661-009-1280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1280-3

Keywords

Navigation