Skip to main content
Log in

Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Inter-annual dynamics of grassland yield of the Three Rivers Headwaters Region of Qinghai–Tibet Plateau of China in 1988–2005 was analyzed using the GLO-PEM model, and the herbage supply function was evaluated. The results indicate that while grassland yield in the region showed marked inter-annual fluctuation there was a trend of increased yield over the 18 years of the study. This increase was especially marked for Alpine Desert and Alpine Steppe and in the west of the region. The inter-annual coefficient of variation of productivity increased from the east to the west of the region and from Marsh, Alpine Meadow, Alpine Steppe, Temperate Steppe to Alpine Desert grasslands. Climate change, particularly increased temperatures in the region during the study period, is suggested to be the main cause of increased grassland yield. However, reduced grazing pressure and changes to the seasonal pattern of grazing could also have influenced the grassland yield trend. These findings indicate the importance of understanding the function of the grassland ecosystems in the region and the effect of climate change on them especially in regard to their use to supply forage for animal production. Reduction of grazing pressure, especially during winter, is indicated to be critical for the restoration and sustainable use of grassland ecosystems in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181–184.

    Article  CAS  Google Scholar 

  • Cao, M., Prince, S. D., Small, J., & Goetz, S. J. (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7, 233–242.

    Article  Google Scholar 

  • Chen, G. C., Lu, X. F., Peng, M., & Zhao, Y. L. (2003). Basic characteristics and conservation of ecosystems of Sanjiangyuan region, Qinghai province. Qinghai Sciences and Technology, 4, 14–17 (in Chinese).

    Google Scholar 

  • Chen, J., Hu, Z. Y., Dou, S., & Qian, Z. Y. (2006). Yin–yang slope problem along Qinghai–Tibetan lines and its radiation mechanism. Cold Regions Science and Technology, 44(3), 217–224.

    Article  Google Scholar 

  • Dong, Q. M., Zhao, X. Q., & Ma, Y. S. (2007). Situations and strategy of sustained development on alpine grassland—livestock industry in headwater region of Yangtze and Yellow rivers. Research of Agricultural Modernization, 28(4), 438–442 (in Chinese).

    Google Scholar 

  • ECAGRC (Editorial Committee of Atlas of Grassland Resources of China) (1993). Atlas of grassland resources of China (1:1M). Beijing: China Atlas (in Chinese).

    Google Scholar 

  • ECEETNR (Editorial Committee of Ecological Environment of TRHR Natural Reserve) (2002). Ecological environments of TRHR natural reserve. Xinning: Qinghai People’s Press (in Chinese).

    Google Scholar 

  • Fang, J., Piao, S., Tang, Z., Peng, C., & Ji, W. (2001). Interannual variability in net primary production and precipitation. Science, 293, 1723.

    Article  CAS  Google Scholar 

  • Feng, J. M., Wang, T., & Xie, C. W. (2006). Eco-environmental degradation in the source region of the Yellow river, northeast Qinghai–Xizang plateau. Environmental Monitoring and Assessment, 122, 125–143.

    Article  CAS  Google Scholar 

  • Gill, R. A., Kelly, R. H., Parton, W. J., Day, K. A., Jackson, R. B., et al. (2002). Using simple environmental variables to estimate below-ground productivity in grasslands. Global Ecology and Biogeography, 11, 79–86.

    Article  Google Scholar 

  • Goetz, S. J., Prince, S. D., Goward, S. N., Thawley, M. M., & Small, J. (1999). Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecological Modelling, 122, 235–239.

    Article  Google Scholar 

  • Goetz, S. J., Prince, S. D., Small, J., Gleason, A. C. R., & Thawley, M. (2000). Interannual variability of global terrestrial primary production: Results of a model driven with satellite observations. Journal of Geophysical Research, 105, 20077–20091.

    Article  Google Scholar 

  • Hu, Z. M., Fan, J. W., Zhong, H. P., & Yu, G. R. (2007). Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Science in Chinese Series D: Earth Sciences, 50, 754–764.

    Article  Google Scholar 

  • Huang, T. Q., Zhao, T., Feng, R. G., Ding, Y. J., Li, L. H., Liu, G. B., et al. (2007). Project arrangement and primal progress in the second phase of the CAS Action Plan for west development. Advances in Earth Science, 22(9), 888–895 (in Chinese).

    Google Scholar 

  • Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., et al. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651–654.

    Article  CAS  Google Scholar 

  • IPCC (2001). Climate change 2001: Synthesis report. In R. T. Watson & the Core Writing Team (Eds.), A contribution of working groups I, II, and III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jing, H., & Xu, J. L. (2005). The effects of human economic activities on eco-environment of the three rivers source region since mid-Qing dynasty. Ascent, 24(3), 87–92 (in Chinese).

    Google Scholar 

  • Knapp, A. K., & Smith, M. D. (2001). Variation among biomass in temporal dynamics of aboveground primary production. Science, 291, 481–484.

    Article  CAS  Google Scholar 

  • Lauenroth, W. K., & Sala, O. E. (1992). Long-term forage production of North American shortgrass steppe. Ecological Applications, 2, 397–403.

    Article  Google Scholar 

  • Le Houérou, H. N., Bingham, R. L., & Skerbek, W. (1988). Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments, 15, 1–18.

    Google Scholar 

  • Li, X. L. (2002). Natural factors and formative mechanism of “Black Beach” formed on grassland in Qinghai–Tibetan plateau. Pratacultural Science, 19(1), 20–22 (in Chinese).

    Google Scholar 

  • Liu, X. L. (2007). The investigation for degenerate grassland of “Degenerated Meadow” in Sanjiangyuan Nature Reserve. Journal of Qinghai Normal University (Natural Science), 1, 93–96 (in Chinese).

    CAS  Google Scholar 

  • Liu, R., Chen, J. M., Liu, J., Deng, F., & Sun, R. (2007). Application of a new leaf area index algorithm to China’s landmass using MODIS data for carbon cycle research. Journal of Environmental Management, 85(3), 649–658.

    Article  CAS  Google Scholar 

  • Liu, W., Wang, Q. J., Wang, X., Zhou, L., & Li, Y. F. (1999). Ecological process of forming “black-soil-type” degraded grassland. Acta Agrestia Sinica, 7(4), 300–307 (in Chinese).

    Google Scholar 

  • Liu, J. Y., Xu, X. L., & Shao, Q. Q. (2008). Grassland degradation in the Three River Headwaters region, Qinghai province. Journal of Geographical Science, 18, 259–273.

    Article  Google Scholar 

  • Lu, Q. S., Huang, L., & Lu, N. (2009). Degraded grassland patterns of eastern eight counties, source region of the three rivers, Qinghai province. Journal of Natural Resources, 24(2), 259–267 (in Chinese).

    Google Scholar 

  • O’Connor, T. G., Haines, L. M., & Snyman, H. A. (2001). Influence of precipitation and species composition on biomass of a semi-arid African grassland. Journal of Ecology, 89, 850–860.

    Article  Google Scholar 

  • Paruelo, J. M., Lauenroth, W. K., Burke, I. C., & Sala, O. E. (1999). Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems, 2, 64–68.

    Article  Google Scholar 

  • Prince, S. D., & Goward, S. N. (1995). Global primary production: a remote sensing approach. Journal of Biogeography, 22, 815–835.

    Article  Google Scholar 

  • Qinghai Grassland Station (1988). Grassland resources of Qinghai. Xining: Qinghai People’s Press (in Chinese).

    Google Scholar 

  • Su, D. X., Meng, Y. D., & Wu, B. G. (2003). Agricultural industry standards of P.R.China—calculation of proper carrying capacity of rangelands (NY/T 635–2002). Beijing: Standards Press of China (in Chinese).

    Google Scholar 

  • Wang, G. X., & Cheng, G. D. (2000). Eco-environmental changes and causative analysis in the source regions of the Yangtze and Yellow Rivers, China. The Environmentalist, 20, 221–232.

    Article  CAS  Google Scholar 

  • Wang, G. X., & Cheng, G. D. (2001). Characteristics of grassland and ecological changes of vegetations in the source regions of Yangtze and Yellow rivers. Journal of Desert Research, 21(2), 101–107 (in Chinese).

    CAS  Google Scholar 

  • Wang, K., Hong, F. Z., & Zong, J. Y. (2005a). Resource resources and their sustainable utility in the Three-River Headwaters Region. Acta Agrestia Sinica, 13(Suppl.), 28–31 (in Chinese).

    Google Scholar 

  • Wang, Q. J., Lai, D. Z., Jing, Z. C., Li, S. X., & Shi, H. L. (2005b). The resources, ecological environment and sustainable development in the source regions of the Yangtze, Huanghe and Yalu Tsangpo rivers. Journal of Lanzhou University (Natural Sciences), 41(4), 50–55 (in Chinese).

    Google Scholar 

  • Xu, X. L., Liu, J. Y., Shao, Q. Q., & Fan, J. W. (2008). The dynamic changes of ecosystem spatial pattern and structure in the Three River Headwaters Region in Qinghai Province during recent 30 years. Geographical Research, 27(4), 829–838 (in Chinese).

    Google Scholar 

  • Yang, J. P., Ding, Y. J., & Chen, R. S. (2006). Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environmental Geology, 50, 313–322.

    Article  Google Scholar 

  • Zhao, X. Q., & Zhou, H. K. (2005). Eco-environmental degradation, vegetation regeneration and sustainable development in the headwaters of three rivers on Tibetan plateau. Bulletin of the Chinese Academy of Sciences, 20(6), 471–476 (in Chinese).

    Google Scholar 

  • Zheng, D., Lin, Z. Y., & Zhang, X. Q. (2002). Progress in studies of Tibetan plateau and global environmental change. Earth Science Frontiers, 9(1), 95–102 (in Chinese).

    Google Scholar 

  • Zhou, X. M. (2001). Chinese Kobresia meadow. Beijing: Science (in Chinese).

    Google Scholar 

  • Zhou, X. M., Wang, Z. B., & Du, Q. (1994). Qinghai vegetation. Xining: Qinghai People’s Press (in Chinese).

    Google Scholar 

  • Zhou, H. K., Zhao, X. Q., Tang, Y. H., & Zhou, L. (2005a). Alpine grassland degradation and its control in the source regions of Yangtze and Yellow Rivers, China. Grassland Science, 51, 191–203.

    Article  Google Scholar 

  • Zhou, H. K., Zhao, X. Q., Zhou, L., Liu, W., Li, Y. N., & Tang, Y. H. (2005b). A study on correlations between vegetation degradation and soil degradation in the alpine meadow of the Qinghai–Tibetan Plateau. Acta Prataculturae Sinica, 14(3), 31–40 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-Wen Fan or Quan-Qin Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, JW., Shao, QQ., Liu, JY. et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China. Environ Monit Assess 170, 571–584 (2010). https://doi.org/10.1007/s10661-009-1258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1258-1

Keywords

Navigation