Skip to main content

Advertisement

Log in

Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red–green–blue (RGB), cyan–magenta–yellow–key black (CMYK), L*a*b*, and hue–intensity–saturation (HIS) color models were determined using the digital software Adobe PhotoshopTM. Land degradation produced significant variations (p < 0.05) in R, C, Y, L*, a*, b*, S, and I values (p < 0.05). The seasonal transition produced significant variations (p < 0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: A review. Pdobiologia, 49, 637–644.

    Article  CAS  Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1–10.

    Article  Google Scholar 

  • Daul, C., Rösch, R., & Claus, C. (2000). Building a color classification system for textured and hue homogeneous surfaces: System calibration and algorithm. Machine Vision and Applications, 12, 137–148.

    Article  Google Scholar 

  • Doi, R., & Ranamukhaarachchi, S. L. (2007a). Soil colour designation using Adobe PhotoshopTM in estimating soil fertility restoration by Acacia auriculiformis plantation on degraded land. Current Science, 92, 1605–1610.

    Google Scholar 

  • Doi, R., & Ranamukhaarachchi, S. L. (2007b). Integrative evaluation of rehabilitative effects of Acacia auriculiformis on degraded soil. Journal of Tropical Forest Science, 19, 150–163.

    Google Scholar 

  • Doi, R., & Sakurai, K. (2004). Principal components derived from soil physico-chemical data explained a land degradation gradient, and suggested the applicability of new indexes for estimation of soil productivity in the Sakaerat Environmental Research Station, Thailand. International Journal of Sustainable Development and World Ecology, 11, 298–311.

    Article  Google Scholar 

  • Jain, T. B., Gould, W. A., Graham, R. T., Pilliod, D. S., Lentile, L. B., & González, G. (2008). A soil burn severity index for understanding soil–fire relations in tropical forests. Ambio, 37, 563–568.

    Article  Google Scholar 

  • Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color modeling and detection methods. Pattern Recognition, 40, 1106–1122.

    Article  Google Scholar 

  • Kanzaki, M., Yoda, K., & Dhanmanonda, K. (1995). Mosaic structure and tree growth pattern in a monodominant tropical seasonal evergreen forest in Thailand. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycosk (Eds.), Vegetation science in forestry (pp. 495–513). The Netherlands: Kluwer.

    Google Scholar 

  • Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., et al. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.

    Article  CAS  Google Scholar 

  • Kourtev, P., Ehrenfeld, J. G., & Huang, W. (1998). Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water Air and Soil Pollution, 105, 493–501.

    Article  CAS  Google Scholar 

  • Liao, K., Paulsen, M. R., & Reid, J. F. (1994). Real-time detection of colour and surface defects of maize kernels using machine vision. Journal of Agricultural Engineering Research, 59, 263–271.

    Article  Google Scholar 

  • Lu, D., Moran, E., & Mausel, P. (2002). Linking Amazonian secondary succession forest growth to soil properties. Land Degradation and Development, 13, 331–343.

    Article  Google Scholar 

  • Mattana, E., Grillo, O., Gianfranco, V., & Gianluigi, B. (2008). Germplasm image analysis of Astragalus maritimus and A. verrucosus of Sardinia (subgen. Trimeniaeus, Fabaceae). Anales del Jardín Botánico de Madrid, 65, 149–155.

    Google Scholar 

  • Mausbach, M. J., & Seybold, C. A. (1998). Assessment of soil quality. In R. Lal (Ed.), Soil quality and agricultural sustainability (pp. 33–43). Chelsea: Ann Arbor.

    Google Scholar 

  • McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Glenden Beach: M and M Software Design.

    Google Scholar 

  • Mouazen, A. M., De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80, 171–183.

    Article  Google Scholar 

  • Sahunalu, P., & Dhanmanonda, P. (1995). Structure and dynamics of dry dipterocarp forest, Sakaerat, northeastern Thailand. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycosk (Eds.), Vegetation science in forestry (pp. 465–494). The Netherlands: Kluwer.

    Google Scholar 

  • Sakurai, K., Tanaka, S., Ishizuka, S., & Kanzaki, M. (1998). Differences in soil properties of dry evergreen and dry deciduous forests in the Sakaerat Environmental Research Station. Tropics, 8, 61–80.

    Article  Google Scholar 

  • Sena, M. M., Poppi, R. J., Frighetto, R. T. S., & Valarini, P. J. (2000). Avaliação do uso de métodos quimiométricos em análise de solos. Quimica Nova, 23, 547–556.

    Google Scholar 

  • Toulios, L. G., Toulios, M. G., & Lipimenou, E. (1998). Soil color relationships with reflectance spectra. Geocarto International, 13, 35–42.

    Article  Google Scholar 

  • van Straalen, N. M. (2002). Assessment of soil contamination—A functional perspective. Biodegradation, 13, 41–52.

    Article  Google Scholar 

  • Yerima, B. P. K., & van Ranst, E. (2005). Introduction to soil science: Soils of the tropics. Victoria: Trafford.

    Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th Ed.). New Jersey: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Doi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doi, R., Wachrinrat, C., Teejuntuk, S. et al. Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand. Environ Monit Assess 170, 301–309 (2010). https://doi.org/10.1007/s10661-009-1233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1233-x

Keywords

Navigation