Skip to main content

Advertisement

Log in

Metallic components of traffic-induced urban aerosol, their spatial variation, and source apportionment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study proposes a practical method to estimate elemental composition and distribution in order to attribute source and quantify impacts of aerosol particles at an urban region in Kolkata, India. Twelve-hour total particulates were collected in winter (2005–2006) and analyzed by energy-dispersive X-ray fluorescence technique to determine multi-elemental composition, especially trace metals. The aerosols consist of various elements including K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, and Pb which exhibit significant concentration at various sites (p < 0.05). The concentration of different metallic elements were found in the order of Zn  >  Pb  >  Ni  >  Cu  >  Cr  >  Co. Statistical multivariate analysis and correlation matrix analyses were performed for factor identification and consequent source apportionment. Contour profiles demonstrate spatial variation of elemental compositions indicating possible source contribution along with meteorological influences. Spatial differences were clearly most significant for Zn, Ni, Pb, and Cu reflecting the importance of anthropogenic inputs, primarily from automobile sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Al-Momani, I. F., Daradkeh, A. S., Haj-Hussein, A. T., Yousef, Y. A., Jaradat, Q. M., & Momani, K. A. (2005). Trace elements in daily collected aerosols in Al-Hashimya, Central Jordon. Atmospheric Research, 73, 87–100.

    Article  CAS  Google Scholar 

  • Arditsoglou, A., & Samara, C. (2005). Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere, 59, 669–678.

    Article  CAS  Google Scholar 

  • Athanassiadis, G. A., & Rao, S. T. (2003). Spatial and temporal variations in the trace elemental data over the north eastern United States. Environmental Pollution, 123, 439–449.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Beavington, F., Cawse, P. A., & Wakenshaw, A. (2004). Comparative studies of atmospheric trace elements: Improvements in air quality near a copper smelter. Science of The Total Environment, 332, 39–49.

    Article  CAS  Google Scholar 

  • Begum, B. A., Kimb, E., Biswasa, S. K., & Hopke, P. K. (2004). Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmospheric Environment, 38, 3025–3038.

    Article  CAS  Google Scholar 

  • Brewer, R., & Belzer, W. (2001). Assessment of metal concentrations in atmospheric particles from Burnaby Lake, British Columbia, Canada. Atmospheric Environment, 35, 5223–5233.

    Article  CAS  Google Scholar 

  • Chandra Mouli, P., Mohan, S. V., Balara, V., Praveen Kumar, M., & Reddy, S. J. (2006). A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmospheric Environment, 40, 136–146.

    Article  CAS  Google Scholar 

  • Cyrys, J., Stölzel, M., Heinrich, J., Kreyling, W. G., Menzel, N., Wittmaack, K., et al. (2003). Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Science of the Total Environment, 305, 143–156.

    Article  CAS  Google Scholar 

  • Dara, S. S. (1997). A text book of environmental chemistry and pollution control. New Delhi: Chand.

    Google Scholar 

  • Deb, M. K., Thakur, M., Mishra, R. K., & Bodhankar, N. (2002). Assessment of atmospheric arsenic level in airborne dust particulates of an urban city of central India. Water Air and Soil Pollution, 140, 57–71.

    Article  CAS  Google Scholar 

  • Eleftheriadis, K., & Colbeck, I. (2001). Coarse atmospheric aerosol: Size distributions of trace elements. Atmospheric Environment, 35, 5321–5330.

    Article  CAS  Google Scholar 

  • Fang, G. C., Wu, Y. S., Huang, S. H., & Rau, J. Y. (2004). Dry deposition (downward, upward) concentration study of particulates and heavy metals during daytime, nighttime period at the traffic sampling site of Sha-Lu, Taiwan. Chemophere, 56, 509–518.

    Article  CAS  Google Scholar 

  • Fang, G. C., Wu, Y. S., Chang, S. Y., Huang, S. H., & Rau, J. Y. (2006). Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 81(4), 320–333.

    Article  CAS  Google Scholar 

  • Funasakaa, K., Sakaia, M., Shinyaa, M., Miyazakia, T., Kamiuraa, T., Kanecob, S., et al. (2003). Size distributions and characteristics of atmospheric inorganic particles by regional comparative study in Urban Osaka, Japan. Atmospheric Environment, 37, 4597–4605.

    Article  Google Scholar 

  • He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., et al. (2001). The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 35, 4959–4970.

    Article  CAS  Google Scholar 

  • Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., & Vonmont, H. (2005). Chemical characterization of PM2.5, PM10 and coarse particles at urban, near city and rural sites in Switzerland. Atmospheric Environment, 39, 637–651.

    Article  CAS  Google Scholar 

  • Jayasekera, R., Freitas, M. C., & Araujo, M. F. (2004). Bulk and trace element analysis of spices: The applicability of k0-standardization and energy dispersive X-ray fluorescence. Journal of Trace Element and Medical Biology, 17, 221–228.

    Article  CAS  Google Scholar 

  • Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006). Characterization and identification of the sources of Cr, Zn, Pb, Cd, Ni, Mn and Fe in PM10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120, 347–360.

    Article  CAS  Google Scholar 

  • Kassomenos, P., Kotroni, V., & Kallos, G. (1995). Analysis of climatological and air quality observations from greater Athens area. Atmospheric Environment, 29, 3671–3688.

    Article  CAS  Google Scholar 

  • Kim Oanh, N. T., Upadhyay, N., Zhuang, Y.-H., Hao, Z.-P., Murthy, D. V. S., Lestari, P., et al. (2006). Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmospheric Environment, 40(18), 3367–3380.

    Article  Google Scholar 

  • Kleeman, M. J., & Cass, G. R. (1998). Source contributions to the size and composition distribution of urban particulate air pollution. Atmospheric Environment, 32, 2803–2816.

    Article  CAS  Google Scholar 

  • Krudysz, M. A., Froinesa, J. R., Finec, P. M., & Sioutas, C. (2008). Intra-community spatial variation of size-fractionated PM mass, OC, EC, and trace elements in the Long Beach, CA area. Atmospheric Environment, 42, 5374–5389.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Jain, M., Sekar, R., Vairamani, M., Sarkar, A. K., & Parashar, D. C. (2001). Chemical composition and association of size-differentiated aerosols at a suburban site in a semi-arid tract of India. Journal of Atmospheric Chemistry, 29, 109–118.

    Article  Google Scholar 

  • Mahajan, A. U., Kumar, C. S. S., Kumar, P., Chakradhar, B., & Badrinath, S. D. (1996). Measurements of elemental composition of aerosol matter and precipitation from a remote background site in India. Atmospheric Environment, 23, 869–874.

    Google Scholar 

  • Manoli, E., Vousta, D., & Samara, C. (2002). Chemical characterisation and source apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment, 36, 949–961.

    Article  CAS  Google Scholar 

  • Negi, B. S., Sadasivan, S., & Mishra, U. C. (1988). Aerosol composition and sources in urban areas in India. Atmospheric Environment, 21, 1259–1266.

    Google Scholar 

  • O’Neill, P. (1990). Arsenic. Heavy metals in soil. New York: Wiley.

    Google Scholar 

  • Pandey, P. K., Patel, K. S., & Subrt, P. (1998). Trace elemental composition of atmospheric particulate at Bhilai in central-east India. Science of The Total Environment, 215, 123–134.

    Article  CAS  Google Scholar 

  • Park, S. S., & Kim, Y. J. (2005). Source contributions to fine particulate matter in an urban atmosphere. Chemosphere, 59, 217–226.

    Article  CAS  Google Scholar 

  • Pellizzari, E. D., Clayton, C. A., Rodes, C. E., Mason, R. E., Piper, L. L., Fort, B., et al. (1999). Particulate matter and manganese exposures in Toronto, Canada. Atmospheric Environment, 33, 721–734.

    Article  CAS  Google Scholar 

  • Rocher, V., Azimi, S., Gasperi, J., Beuvin, L., Muller, M., Moilleron, R., et al. (2004). Hydrocarbons and metals in atmospheric deposition and roof runoff in central Paris. Water Air and Soil Pollution, 159, 67–86.

    Article  CAS  Google Scholar 

  • Salvador, P., Artiınano, B., Alonsoa, D. G., Querolb, X., & Alastuey, A. (2004). Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmospheric Environment, 38, 435–447.

    Article  CAS  Google Scholar 

  • Thomaidis, N. S., Bakeas, E. B. & Siskos, P. A. (2003) Characterization of lead, cadmium, arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere, 52, 959–966.

    CAS  Google Scholar 

  • Tripathi, B. D., Tripathi, A., & Misra, K. (1991). Airborne lead pollution in the city of Varanasi, India. Atmospheric Environment, 28, 2317–2323.

    Article  Google Scholar 

  • Tsai, Y. I., Kuo, S. C., & Lin, Y. H. (2003). Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan. Atmospheric Environment, 37, 3401–3411.

    Article  CAS  Google Scholar 

  • Vecchi, R., Valli, G., & Mariani, A. (1994). Energy-dispersive X-ray fluorescence analysis applied to biomonitoring on Alps. Biology and Trace Element Research, 43–45, 223–228.

    Article  Google Scholar 

  • Wang, H., & Shooter, D. (2005). Source apportionment of fine and coarse atmospheric particles in Auckland, New Zealand. Science of the Total Environment, 340, 189–198.

    Article  CAS  Google Scholar 

  • WHO (1981). International programme on chemical safety, environmental health criteria 17. Geneva: World Health Organisation.

    Google Scholar 

  • Yatin, M., Tuncel, S., Aras, N. K., Olmez, I., Aygun, S., & Tuncel, G. (2000). Atmospheric trace elements in Ankara, Turkey: Factors affecting chemical composition of fine particles. Atmospheric Environment, 34, 1305–1318.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Maity, J.P., Samal, A.C. et al. Metallic components of traffic-induced urban aerosol, their spatial variation, and source apportionment. Environ Monit Assess 168, 561–574 (2010). https://doi.org/10.1007/s10661-009-1134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1134-z

Keywords

Profiles

  1. Alok Chandra Samal