Advertisement

Environmental Monitoring and Assessment

, Volume 167, Issue 1–4, pp 423–435 | Cite as

Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment

  • Emi Martín-Queller
  • David Moreno-Mateos
  • César Pedrocchi
  • Juan Cervantes
  • Gonzalo Martínez
Article

Abstract

Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240–541 μS·cm − 1 more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg·l − 1 during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19–0.42 mg·l − 1 more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg·l − 1).

Keywords

Irrigation return flows Water quality Pig farming Salinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberto, F., Machin, J., & Aragüés, R. (1986). La problemática general de la salinidad en la cuenca del Ebro. In Sistema integrado del Ebro, estudio interdisciplinar (pp. 221–236). Madrid: Convenio de cooperación científico técnico Hispano Norteamericano, in Spanish.Google Scholar
  2. Anuario Estadístico Agrario de Aragón (2003–2005). Retrieved from: http://portal.aragon.es/portal/page/portal/AGR/ESTADISTICAS_AGRICOLAS_GANADERAS/Anuarios. Accessed 08 June 2009.
  3. APHA (1998). Métodos normalizados para el análisis de aguas potables y residuales. Madrid: American Public Health Association, Díaz de Santos, S.A., in Spanish.Google Scholar
  4. Aragüés, R., & Tanji, K. K. (2003). Water quality of irrigation return flows. In Marcel Dekker Inc. (Ed.), Encyclopedia of water science (pp. 502–506).Google Scholar
  5. Bellot, J., Golley, F., & Aguinaco, M. T. (1989). Environmental consequences of salt exports from an irrigated landscape in the Ebro River Basin, Spain. Agriculture, Ecosystems and Environment, 27, 131–139.CrossRefGoogle Scholar
  6. Burkhalter, J. P., & Gates, T. K. (2005). Agroecological impacts from salinization and waterlogging in an irrigated river valley. Journal of Irrigation and Drainage Engineering, 131, 197–209.CrossRefGoogle Scholar
  7. Causapé, J. (2002). Repercusiones medioambientales de la agricultura sobre recursos hídricos de la Comunidad de Regantes no V de Bardenas (Zaragoza), (165 pp.). PhD thesis. Faculty of Geological Science, Zaragoza University, in Spanish.Google Scholar
  8. Causapé, J., Quílez, D., & Aragüés, R. (2004a). Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows. Agricultural Water Management, 70(3), 211–228.Google Scholar
  9. Causapé, J., Quílez, D., & Aragüés, R. (2004b). Salt and nitrate concentrations in the surface waters of the CR-V irrigation district (Bardenas I, Spain): Diagnosis and prescriptions for reducing off-site contamination. Journal of Hydrology, 295, 87–100.CrossRefGoogle Scholar
  10. Causapé, J., Quílez, D., & Aragüés, R. (2006). Irrigation efficiency and quality of irrigation return flows in the Ebro river basin: An overview. Environmental Monitoring and Assessment, 117, 451–461.CrossRefGoogle Scholar
  11. Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 42, 3285–3304.CrossRefGoogle Scholar
  12. Comín, F. A., & Williams, W. D. (1993). In R. Margalef (Ed.), Parched continents: Our common future? A paradigm of planetary problems (pp. 473–527). Dordrecht: Elsevier.Google Scholar
  13. Confederación Hidrográfica del Ebro (CHE) (1996). Plan Hidrológico de la cuenca del Ebro. http://oph.chebro.es/PlanHidrologico/inicio.htm. Accessed 5 December 2008.
  14. Díez, J. A., De la torre, A. I., Cartagena, M. C., Carballo, M., Vallejo, A., & Muñoz, M. J. (2001). Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches. Journal of Environmental Quality, 30, 2165–2172.CrossRefGoogle Scholar
  15. European Union (1998). Council directive 98/83/CE of 3 November 1998 imposed to the surface waters devoted to the production of water for human consumption. Official Journal L, 330, 32–54.Google Scholar
  16. Ghassemi, F., Jakeman, A., & Nix, H. (1995). Salinization of land and water resources. Human causes, extent, management, and case studies. Sydney: University of New South Wale Press.Google Scholar
  17. Haddeland, I., Lettenmaier, D., & Skaugen, T. (2006). Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. Journal of Hydrology, 324, 210–223.CrossRefGoogle Scholar
  18. Harker, D. B. (1983). Characteristics, trends and surface water quality implication of the saline effluent. In R. H. French (Ed.), Salinity in water courses and reservoirs (pp. 325–334). Boston: Butterworth.Google Scholar
  19. Heathwaite, A. L., Johnes, P. J., & Peters, N. E. (1996). Trends in nutrients. Hydrological Processes, 10, 263–293.CrossRefGoogle Scholar
  20. Isidoro, D. (1999). Impacto del regadío sobre la calidad de las aguas del barranco de La Violada (Huesca): Salinidad y nitratos. PhD thesis. Department of environment and soil science. Lleida University, in Spanish.Google Scholar
  21. Isidoro, D., & Aragüés, R. (2007). River water quality and irrigated agriculture in the Ebro basin: An overview. International Journal of Water Resources Development, 23(1), 91–106.CrossRefGoogle Scholar
  22. Law, J. P., & Skogerboe, G. W. (Eds.) (1977). Irrigation return flow quality management, Proceedings of national conference. Fort Collins, CO; 451.Google Scholar
  23. Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.Google Scholar
  24. Mhlanga, B. F. N., Ndlovu, L. S., & Senzanje, A. (2006). Impacts of irrigation return flows on the quality of the receiving waters: A case of sugarcane irrigated fields at the Royal Swaziland Sugar Corporation (RSSC) in the Mbuluzi River Basin (Swaziland). Physics and Chemistry of the Earth, 31(15–16), 804–813.Google Scholar
  25. National Research Council (NRC) (1996). A new era for irrigation, Committee on the Future of Irrigation in the Face of Competing Demands, Water Science and Technology Board, NRC. Washington: National Academy Press.Google Scholar
  26. Pedrocchi, C. (coord.) (1998). Ecología de Los Monegros. La paciencia como estrategia de supervivencia. Huesca: IEA y Centro de Desarrollo de Monegros.Google Scholar
  27. Peterson, E., Merton, A., Theobald, D., Urquhart, N. (2006). Patterns of spatial autocorrelation in stream water chemistry. Environmental Monitoring and Assessment, 121, 569–594.CrossRefGoogle Scholar
  28. Peterson, E., Theobald, D., Ver Hoef, J. M. (2007). Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater Biology, 52, 267–279.CrossRefGoogle Scholar
  29. Postel, S. (1999). Pillar of sand: Can the irrigation miracle last? New York: Norton.Google Scholar
  30. Quílez, D. (1998). La salinidad en las aguas superficiales de la cuenca del Ebro: Análisis del impacto potencial del regadío de Monegros II (351 pp.). PhD thesis. Department of Environment and Soil Science. Lleida University, in Spanish.Google Scholar
  31. Riemersma, S., Little, J., Ontkean, G., & Moskal-Hébert, T. (2006). Phosphorus sources and sinks in watersheds: A review. In Alberta soil phosphorus limits project. Volume 5: Background information and reviews. Lethbridge, Alberta, Canada: Alberta Agriculture, Food and Rural Development.Google Scholar
  32. Rodvang, S. J., Mikalson, D. M., & Ryan, M. C. (2004). Changes in ground water quality in an irrigated area of southern Alberta. Journal of Environmental Quality, 33, 476–487.Google Scholar
  33. Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. FAO Irrigation and Drainage Paper 61, Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  34. Tedeschi, A., Beltrán, A., & Aragüés, R. (2001). Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain). Agricultural Water Management, 49, 31–50.CrossRefGoogle Scholar
  35. Ver Hoef, J. M., Peterson, E. & Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics, 13, 449–464.CrossRefGoogle Scholar
  36. Yao, L.-X., Li, G.-L., Tu, S.-H., Sulewski, G., & He, Z.-H. (2007). Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Science of the Total Environment, 383, 106–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Emi Martín-Queller
    • 1
  • David Moreno-Mateos
    • 2
  • César Pedrocchi
    • 3
  • Juan Cervantes
    • 3
  • Gonzalo Martínez
    • 3
  1. 1.Department of Agroforestry Engineering, School of Agricultural and Forestry EngineeringUniversity of LleidaLleidaSpain
  2. 2.Integrative Biology DepartmentUniversity of CaliforniaBerkeleyUSA
  3. 3.Pyrenean Institute of Ecology—CSICJacaSpain

Personalised recommendations