Skip to main content

Advertisement

Log in

Aluminium concentrations in Swedish forest streams and co-variations with catchment characteristics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (<500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselsson, C., & Westling, O., et al. (2007). Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. Forest Ecology and Management, 238(1–3), 167–174. doi:10.1016/j.foreco.2006.10.015.

    Article  Google Scholar 

  • Berggren, D., & Mulder, J. (1995). The role of organic-matter in controlling aluminum solubility in acidic mineral soil horizons. Geochimica et Cosmochimica Acta, 59(20), 4167–4180. doi:10.1016/0016-7037(95)94443-J.

    Article  CAS  Google Scholar 

  • Bertills, U., Fölster, J., et al. (2007). Bara naturlig försurning—underlagsrapport till fördjupad utvärdering av miljömålsarbetet (Natural acidification only—report on the in-depth evaluation of the environmental quality objective work). Swedish Environmental Protection Agency, report 5766. Stockholm: 116 pp. In Swedish, English summary.

  • Bishop, K., Seibert, J., et al. (2004). Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185–189. doi:10.1002/hyp.5209.

    Article  Google Scholar 

  • Borůvka, L., Mladkova, L., et al. (2005). Factors controlling spatial distribution of soil acidification and Al forms in forest soils. Journal of Inorganic Biochemistry, 99(9), 1796–1806. doi:10.1016/j.jinorgbio.2005.06.028.

    Article  CAS  Google Scholar 

  • Borůvka, L., Mladkova, L., et al. (2007). Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 140(4), 374–382. doi:10.1016/j.geoderma.2007.04.018.

    Article  CAS  Google Scholar 

  • Clair, T., & Hindar, A. (2005). Liming for the mitigation of acid rain effects in freshwaters: A review of recent results. Environmental Review, 13, 91–128. doi:10.1139/a05-009.

    Article  CAS  Google Scholar 

  • Cory, N., Buffam, I., et al. (2006). Landscape control of stream water aluminum in a boreal catchment during spring flood. Environmental Science & Technology, 40(11), 3494–3500. doi:10.1021/es0523183.

    Article  CAS  Google Scholar 

  • Cory, N., Andrén, C., et al. (2007a). Modelling inorganic aluminium with WHAM in environmental monitoring. Applied Geochemistry, 22, 1196–1201. doi:10.1016/j.apgeochem.2007.03.011.

    Article  CAS  Google Scholar 

  • Cory, N., Laudon, H., et al. (2007b). Evolution of soil solution aluminum during transport along a forested boreal hillslope. Journal of Geophysical Research-Biogeosciences, 112, G03014.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Schofield, C. L. (1979). Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the northeast. Science, 204(4390), 304–306. doi:10.1126/science.204.4390.304.

    Article  CAS  Google Scholar 

  • de Vries, W., van der Salm, C., et al. (2007). Element fluxes through European forest ecosystems and their relationship with stand and site characteristics. Environmental Pollution, 148, 501–513. doi:10.1016/j.envpol.2006.12.001.

    Article  CAS  Google Scholar 

  • Driscoll, C. T. (1984). A procedure for the fractionation of aqueous aluminum in dilute acidic waters. International Journal of Environmental Analytical Chemistry, 16(4), 267–283. doi:10.1080/03067318408076957.

    Article  CAS  Google Scholar 

  • EEA (1995). CORINE Land Cover. European Environment Agency, Commission of the European Communities. http://reports.eea.europa.eu/COR0-landcover/en.

  • Eriksson, L., Johansson, E., et al. (1999). Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS). Umea: Umetrics AB.

    Google Scholar 

  • Fölster, J. (2007). Förslag till bedömningsgrunder för försurning i sjöar och vattendrag (Proposed criteria for acidification classification of lakes and streams). Dept. Environm. Assess., SLU report 2007:9. Uppsala: 29pp. In Swedish.

  • Giesler, R., Petersson, T., et al. (2002). Phosphorus limitation in boreal forests: Effects of aluminium and iron accumulation in the humus layer. Ecosystems (New York, N.Y.), 5, 300–314. doi:10.1007/s10021-001-0073-5.

    CAS  Google Scholar 

  • Guo, J. H., Zhang, X. S., et al. (2007). Evaluating controlling factors to Al-i/(Ca+Mg) molar ratio in acidic soil water, southern and southwestern China: Multivariate approach. Environmental Monitoring and Assessment, 129(1–3), 321–329. doi:10.1007/s10661-006-9365-8.

    Article  CAS  Google Scholar 

  • Henriksson, L., & Brodin, Y. W. (1995). Liming of acidified surface waters—A Swedish synthesis. Berlin: Springer.

    Google Scholar 

  • Hindar, A. (2005). Whole-catchment application of dolomite to mitigate episodic acidification of streams induced by sea-salt deposition. The Science of the Total Environment, 343(1–3), 35–49. doi:10.1016/j.scitotenv.2004.09.040.

    CAS  Google Scholar 

  • Hindar, A., Henriksen, A., et al. (1995). Extreme acidification in small catchments in southwestern Norway associated with a sea salt episode. Water, Air, and Soil Pollution, 85, 547–552. doi:10.1007/BF00476886.

    Article  CAS  Google Scholar 

  • Hruska, J., Moldan, F., et al. (2002). Recovery from acidification in central Europe—Observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. Environmental Pollution, 120(2), 261–274. doi:10.1016/S0269-7491(02)00149-5.

    Article  CAS  Google Scholar 

  • Hruska, J., Kohler, S., et al. (2003). Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science & Technology, 37(9), 1726–1730. doi:10.1021/es0201552.

    Article  CAS  Google Scholar 

  • Johnson, C. E., Driscoll, C., et al. (2000). Element fluxes and landscape position in a northern hardwood forest watershed ecosystem. Ecosystems (New York, N.Y.), 3, 159–184. doi:10.1007/s100210000017.

    CAS  Google Scholar 

  • Kirchner, J. W., & Lydersen, E. (1995). Base cation depletion and potential long-term acidification of Norwegian catchments. Environmental Science & Technology, 29(8), 1953–1960. doi:10.1021/es00008a012.

    Article  CAS  Google Scholar 

  • Krug, E. C., & Frink, C. R. (1983). Acid rain on acid soil: A new perspective. Science, 221, 520–525. doi:10.1126/science.221.4610.520.

    Article  CAS  Google Scholar 

  • Laitinen, M., & Valtonen, T. (1995). Cardiovascular, ventilatory and hematological responses of brown trout (Salmo-Trutta L), to the combined effects of acidity and aluminum in humic water at winter temperatures. Aquatic Toxicology (Amsterdam, Netherlands), 31(2), 99–112. doi:10.1016/0166-445X(94)00060-4.

    CAS  Google Scholar 

  • Langer, J., Persson, C., et al. (1996). Air pollution assessment study using the MATCH Modelling system. Application to sulphur and nitrogen compounds over Sweden 1994. Norrköping, Sweden, Swedish Meteorological and Hydrological Institute, Report no. 69.

  • Larssen, T., & Holme, J. (2006). Afforestation, seasalt episodes and acidification—A paired catchment study in western Norway. Environmental Pollution, 139, 440–450. doi:10.1016/j.envpol.2005.06.012.

    Article  CAS  Google Scholar 

  • Laudon, H., Westling, O., et al. (2000). Cause of pH decline in stream water during spring melt runoff in northern Sweden. Canadian Journal of Fisheries and Aquatic Sciences, 57(9), 1888–1900. doi:10.1139/cjfas-57-9-1888.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., Sutherland, J. W., et al. (2007). Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Environmental Science & Technology, 41(1), 93–98. doi:10.1021/es061437v.

    Article  CAS  Google Scholar 

  • Lind, B. B., & Lundin, L. (1990). Saturated hydraulic conductivity of Scandinavian tills. Nordic Hydrology, 21(2), 107–118.

    Google Scholar 

  • Löfgren, S. (2001). The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water, Air, and Soil Pollution, 130, 863–868. doi:10.1023/A:1013895215558.

    Article  Google Scholar 

  • Löfgren, S., Cory, N., et al. (2009). The long-term effects of catchment liming and reduced sulphur deposition on forest soils and runoff chemistry in southwest Sweden. Forest Ecology and Management. doi:10.1016/j.foreco.2009.04.030.

    Google Scholar 

  • Lundström, U., van Bremen, N., et al. (2000a). The podzolation process. A review. Geoderma, 94, 91–107. doi:10.1016/S0016-7061(99)00036-1.

    Article  Google Scholar 

  • Lundström, U. S., van Breemen, N., et al. (2000b). Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries. Geoderma, 94(2–4), 335–353. doi:10.1016/S0016-7061(99)00077-4.

    Article  Google Scholar 

  • Lydersen, E., Löfgren, S., et al. (2002). Chemical and biological effects of reacidification of limed water bodies—A state of the art review on metals. Critical Reviews in Environmental Science and Technology, 32(2–3), 73–295. doi:10.1080/10643380290813453.

    Article  CAS  Google Scholar 

  • Lydersen, E., Larsen, T., et al. (2003). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. The Science of the Total Environment, 326(1–3), 63–69. doi:10.1016/j.scitotenv.2003.12.005.

    Google Scholar 

  • Mulder, J., Pijpers, M., et al. (1991). Water-flow paths and the spatial-distribution of soils and exchangeable cations in an acid-rain impacted and a pristine catchment in Norway. Water Resources Research, 27(11), 2919–2928. doi:10.1029/91WR01911.

    Article  CAS  Google Scholar 

  • Mylona, S. (1996). Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus, B48, 662–689.

    Google Scholar 

  • Nilsson, N. E. (1990). The Swedish national atlas: The forests. Jönköping: Swedish Forest Agency.

    Google Scholar 

  • Nilsson, S. I. (1993). Acidification of Swedish oligotrophic lakes—Interactions between deposition, forest growth and effects on lake-water quality. Ambio, 22(5), 272–276.

    Google Scholar 

  • Nilsson, T., Johansson, M.-B., et al. (2007). Trädslagets betydelse för markens syra-basstatus—resultat från Ståndortskarteringen. (Tree specie effects on the acid–base status of soils—results from the Swedish National Forest Soil Inventory), Swedish Forest Agency report 2:2007. (In Swedish).

  • Palmer, S. M., Wellington, B. I., et al. (2005). Landscape influences on aluminium and dissolved organic carbon in streams draining the Hubbard Brook valley, New Hampshire, USA. Hydrological Processes, 19, 1751–1769. doi:10.1002/hyp.5660.

    Article  CAS  Google Scholar 

  • Pellerin, B. A., Fernandez, I. J., et al. (2002). Soil aluminum distribution in the near-stream zone at the Bear Brook Watershed in Maine. Water, Air, and Soil Pollution, 134(1–4), 189–204. doi:10.1023/A:1014115717784.

    Article  CAS  Google Scholar 

  • Pelley, J. (2003). Adirondack lakes recovering from acid rain. Environmental Science & Technology, 37(11), 202A–203A. doi:10.1021/es032470+.

    Article  CAS  Google Scholar 

  • Poleo, A. B. S., Ostbye, K., et al. (1997). Toxicity of acid aluminium-rich water to seven freshwater fish species: A comparative laboratory study. Environmental Pollution, 96(2), 129–139. doi:10.1016/S0269-7491(97)00033-X.

    Article  CAS  Google Scholar 

  • Reese, H., Nilsson, M., et al. (2003). Countrywide estimates of forest variables using satellite data and field data from the national forest inventory. Ambio, 32(8), 542–548.

    Google Scholar 

  • Reich, P. B., Oleksyn, J., et al. (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecology Letters, 8, 811–818. doi:10.1111/j.1461-0248.2005.00779.x.

    Article  Google Scholar 

  • Rodhe, A. (2003). Flow paths of water in Swedish forests. KSLAT, 142(18), 23–29.

    Google Scholar 

  • Rosenqvist, I. T. (1978). Sources for acidification of river water in Norway. The Science of the Total Environment, 10, 39–49. doi:10.1016/0048-9697(78)90048-7.

    Article  CAS  Google Scholar 

  • Schecher, W. O., & Driscoll, C. T. (1987). An evaluation of uncertainty associated with aluminium equilibrium calculations. Water Resources Research, 23(4), 525–534. doi:10.1029/WR023i004p00525.

    Article  CAS  Google Scholar 

  • Skjelkvaale, B. L., Tørseth, K., et al. (2001). Decrease in acid deposition—Recovery in Norwegian waters. Water, Air, and Soil Pollution, 130, 1433–1438. doi:10.1023/A:1013956829092.

    Article  Google Scholar 

  • Skjelkvaale, B. L., Borg, H., et al. (2007). Large scale patterns of chemical recovery in lakes in Norway and Sweden: Importance of seasalt episodes and changes in dissolved organic carbon. Applied Geochemistry, 22(6), 1174–1180. doi:10.1016/j.apgeochem.2007.03.040.

    Article  CAS  Google Scholar 

  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 8, 273–283.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Swedish Land Survey (2008). GSD-land and vegetation cover-presentation. Swedish Land Survey. http://www.lantmateriet.se/templates/LMV_Page.aspx?id=1037&lang=EN. 2008-09-01.

  • Sverdrup, H., & Warfvinge, P. (1993). Calculating field weathering rates using a mechanistic geochemical model (PROFILE). Journal of Applied Geochemistry, 8, 273–283. doi:10.1016/0883-2927(93)90042-F.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tomppo, E., Olsson, H., et al. (2008). Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment, 112, 1982–1999. doi:10.1016/j.rse.2007.03.032.

    Article  Google Scholar 

  • Warby, R. A. F., Johnson, C. E., et al. (2005). Chemical recovery of surface waters across the northeastern United States from reduced inputs of acidic deposition: 1984–2001. Environmental Science & Technology, 39(17), 6548–6554. doi:10.1021/es048553n.

    Article  CAS  Google Scholar 

  • Wilander, A., & Fölster, J. (2007). Sjöinventeringen 2005—en synoptisk vattenkemisk undersökning av Sveriges sjöar. (Lake survey 2005—a synoptic water chemical survey of Swedish lakes), Dept. Env. Assess., SLU report 2007:16: 50pp. In Swedish.

  • Vogt, R. D., & Muniz, I. P. (1997). Soil and stream water chemistry in a pristine and boggy site in mid-Norway. Hydrobiologia, 348, 19–38. doi:10.1023/A:1003029031653.

    Article  CAS  Google Scholar 

  • Vuorenmaa, J., & Forsius, M. (2008). Recovery of acidified Finnish lakes: Trends, patterns and dependence of catchment characteristics. Hydrology and Earth System Sciences, 12(2), 465–478.

    Article  CAS  Google Scholar 

  • Ytrestoyl, T., Finstad, B., et al. (2001). Swimming performance and blood chemistry in Atlantic salmon spawners exposed to acid river water with elevated aluminium concentrations. Journal of Fish Biology, 58(4), 1025–1038. doi:10.1111/j.1095-8649.2001.tb00552.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Löfgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löfgren, S., Cory, N. & Zetterberg, T. Aluminium concentrations in Swedish forest streams and co-variations with catchment characteristics. Environ Monit Assess 166, 609–624 (2010). https://doi.org/10.1007/s10661-009-1027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1027-1

Keywords

Navigation