Skip to main content
Log in

Phenanthrene sorption to humic acids, humin, and black carbon in sediments from typical water systems in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Humic acid (HA) and humin (HM) were extracted with 0.1 M NaOH and black carbon (BC) was isolated using a combustion method at 375°C from six sediments in different areas in China and their sorption isotherms for phenanthrene (Phen) were determined. All sorption isotherms were nonlinear and fitted well with the Freundlich model. Among the SOM, HM and BC with more aromatic carbon controlled the sorption nonlinearity and capacity. Compared to HM, higher K oc values were observed for BC due to the combustion of organic matter and native sorbates in HM. For HAs isotherms, a positive relation was observed between the K oc values and aliphaticity or H/C ratios, but a negative relation was shown between the n values and polarity of HAs. HA, HM, and BC were responsible for 0.4–9.3%, 46–97%, and 65–96% of the total sorption, respectively, indicating the dominance of HM and BC fractions in overall sorption of Phen by the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accardi-Dey, A., & Gschwend, P. M. (2002). Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science & Technology, 36, 21–29. doi:10.1021/es010953c.

    Article  CAS  Google Scholar 

  • Bucheli, T. D., & Gustafsson, O. (2000). Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environmental Science & Technology, 34, 5144–5151. doi:10.1021/es000092s.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Gustafsson, O., Bucheli, T. D., Jonker, M. T. O., Koelmans, A. A., & van Noort, P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology, 39, 6881–6895. doi:10.1021/es050191b.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Kukulska, Z., Kalaitzidis, S., Christanis, K., & Gustafsson, O. (2004). Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environmental Science & Technology, 38, 3632–3640. doi:10.1021/es0498742.

    Article  CAS  Google Scholar 

  • Chiou, C. T., Kile, D. E., Rutherford, D. W., Sheng, G. Y., & Boyd, S. A. (2000). Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity. Environmental Science & Technology, 34, 1254–1258. doi:10.1021/es990261c.

    Article  CAS  Google Scholar 

  • Choi, W. J., Kim, S. B., & Kim, D. J. (2007). Desorption Kinetics of benzene in a sandy soil in the presence of powdered activated carbon. Environmental Monitoring and Assessment, 125, 313–323. doi:10.1007/s10661-006-9524-y.

    Article  CAS  Google Scholar 

  • Drori, Y., Aizenshtat, Z., & Chefetz, B. (2008). Sorption of organic compounds to humin from soils irrigated with reclaimed wastewater. Geoderma, 145, 98–106. doi:10.1016/j.geoderma.2008.02.012.

    Article  CAS  Google Scholar 

  • Gelinas, Y., Prentice, K. M., Baldock, J. A., & Hedges, J. I. (2001). An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environmental Science & Technology, 31, 3519–3525. doi:10.1021/es010504c.

    Article  CAS  Google Scholar 

  • Grathwohl, P. (1990). Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environmental Science & Technology, 24, 1687–1693. doi:10.1021/es00081a010.

    Article  CAS  Google Scholar 

  • Gustafsson, O., Haghseta, F., Chan, C., Macfarlane, J., & Gschwend, P. M. (1997). Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environmental Science & Technology, 31, 203–209. doi:10.1021/es960317s.

    Article  CAS  Google Scholar 

  • He, Y., Xu, J., Wang, H., Ma, Z., & Chen, J. (2006). Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environmental Research, 101, 362–372. doi:10.1016/j.envres.2006.01.002.

    Article  CAS  Google Scholar 

  • Kang, S., & Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 39, 134–140. doi:10.1021/es0490828.

    Article  CAS  Google Scholar 

  • Kilduff, J. E., & Wigton, A. (1999). Sorption of TCE by humic-preloaded activated carbon: Incorporating size—exclusion and pore blockage phenomena in a competitive adsorption model. Environmental Science & Technology, 33, 250–256. doi:10.1021/es980321z.

    Article  CAS  Google Scholar 

  • Kohl, S. D., & Rice, J. A. (1998). The binding of contaminants to humin: A mass balance. Chemosphere, 36, 251–261. doi:10.1016/S0045-6535(97)10005-4.

    Article  CAS  Google Scholar 

  • Liang, C., Dang, Z., Xiao, B., Huang, W., & Liu, C. (2006). Equilibrium sorption of phenanthrene by soil humic acids. Chemosphere, 63, 1961–1968. doi:10.1016/j.chemosphere.2005.09.065.

    Article  CAS  Google Scholar 

  • Liu, P., Zhu, D., Zhang, H., Shi, X., Sun, H., & Dang, F. (2008). Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China. Environmental Pollution, 4, 1–8.

    CAS  Google Scholar 

  • Luo, L., Zhang, S., & Ma, Y. (2008). Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere, 72, 891–896. doi:10.1016/j.chemosphere.2008.03.051.

    Article  CAS  Google Scholar 

  • Mackay, D., Shiu, W. Y., & Ma, K. C. (1992). Illustrated handbook of physical–chemical properties and environmental fate for organic chemicals (Vols. 1 and 2). Chelsea, MI: Lewis Publishers.

    Google Scholar 

  • Macleod, C. J. A., & Semple, K. T. (2003). Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils. Soil Biology & Biochemistry, 35, 1443–1450. doi:10.1016/S0038-0717(03)00238-4.

    Article  CAS  Google Scholar 

  • Mayer, L. M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271–1284. doi:10.1016/0016-7037(94)90381-6.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., Nieuwenhuize, J., & Van Breugel, P. (1999). Black carbon in marine sediments. Marine Chemistry, 65, 245–252. doi:10.1016/S0304-4203(99)00005-5.

    Article  CAS  Google Scholar 

  • Nam, K., & Kim, J. Y. (2002). Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil. Environmental Pollution, 118, 427–433. doi:10.1016/S0269-7491(01)00296-2.

    Article  CAS  Google Scholar 

  • Nguyen, T. H., Sabbah, I., & Ball, W. P. (2004). Sorption nonlinearity for organic contaminants with diesel soot: Method development and isotherm interpretation. Environmental Science & Technology, 38, 3595–3603. doi:10.1021/es0499748.

    Article  CAS  Google Scholar 

  • Oren, A., & Chefetz, B. (2005). Sorption-desorptin behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere, 61, 19–29. doi:10.1016/j.chemosphere.2005.03.021.

    Article  CAS  Google Scholar 

  • Pan, B., Xing, B., & Tao, S. (2007). Effect of physical forms of soil organic matter on phenanthrene sorption. Chemosphere, 68, 1262–1269. doi:10.1016/j.chemosphere.2007.01.054.

    Article  CAS  Google Scholar 

  • Pignatello, J., & Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology, 30, 1–11. doi:10.1021/es940683g.

    Article  CAS  Google Scholar 

  • Ran, Y., Huang, W., Rao, P., Liu, D., Sheng, G., & Fu, J. (2002). The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments. Journal of Environmental Quality, 31, 1953–1962.

    Article  CAS  Google Scholar 

  • Ran, Y., Sun, K., Yang, Y., Xing, B., & Zeng, E. (2007). Strong sorption of phenanthrene by condensed organic matter in soils and sediments. Environmental Science & Technology, 41, 3952–3958. doi:10.1021/es062928i.

    Article  CAS  Google Scholar 

  • Santos, E. B. H., & Duarte, A. C. (1998). The influence of pulp and paper mill effluents on the composition of the humic fraction of aquatic organic matter. Water Research, 32, 597–608. doi:10.1016/S0043-1354(97)00301-1.

    Article  CAS  Google Scholar 

  • Senesi, N., D’Orazio, V., & Rice, G. (2003). Humic acids in the first generation of Eurosoils. Geoderma, 116, 325–344. doi:10.1016/S0016-7061(03)00107-1.

    Article  CAS  Google Scholar 

  • Song, J., Peng, P., & Huang, W. (2002). Black carbon and kerogen in soils and sediments. 1. Quantification and characterization. Environmental Science & Technology, 36, 3960–3967. doi:10.1021/es025502m.

    Article  CAS  Google Scholar 

  • Sun, K., Ran, Y., Yang, Y., & Xing, B. (2008). Sorption of phenanthrene by nonhydrolyzable organic matter from different size sediments. Environmental Science & Technology, 42, 1961–1966. doi:10.1021/es7024627.

    Article  CAS  Google Scholar 

  • Swift, R. S. (1996). Organic matter characterization. Methods of Soil Analysis: Part 3. Chemical Methods. Madison, WI: Soil Science Society of America Inc.

    Google Scholar 

  • Tang, Z., Zhang, W., & Li, G. (2009). Adsorption and desorption characteristics of monosulfuron in Chinese soils. Journal of Hazardous Materials, 166, 1351–1356. doi:10.1016/j.jhazmat.2008.12.052.

    Article  CAS  Google Scholar 

  • Wauchope, R. D., & Koskinen, W. C. (1983). Adsorption-desorption equilibria of herbicides in soil: A thermodynamic perspective. Weed Science, 31, 504–512.

    CAS  Google Scholar 

  • Weber, W. J., Jr., McGinley, P. M., & Katz, L. E. (1992). A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environmental Science & Technology, 26, 1955–1962. doi:10.1021/es00034a012.

    Article  CAS  Google Scholar 

  • Xiao, B., Yu, Z., Huang, W., Song, J., & Peng, P. (2004). Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants. Environmental Science & Technology, 38, 5842–5852. doi:10.1021/es049761i.

    Article  CAS  Google Scholar 

  • Xing, B. (2001). Sorption of naphthalene and phenanthrene by soil humic acids. Environmental Pollution, 111, 303–309. doi:10.1016/S0269-7491(00)00065-8.

    Article  CAS  Google Scholar 

  • Xing, B., Liu, J. D., Liu, X. B., & Han, X. Z. (2005). Extraction and characterization of humic acids and humins from a black soil of China. Pedospher, 15, 1–8.

    CAS  Google Scholar 

  • Xu, D., Zhu, S., Chen, H., & Li, F. (2006). Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 276, 1–7. doi:10.1016/j.colsurfa.2005.09.038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengchang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., He, M., Lin, C. et al. Phenanthrene sorption to humic acids, humin, and black carbon in sediments from typical water systems in China. Environ Monit Assess 166, 445–459 (2010). https://doi.org/10.1007/s10661-009-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1014-6

Keywords

Navigation