Skip to main content
Log in

Photochemical pollution indicators—an analysis of 12 European monitoring stations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Indicators were devised to classify air pollution monitoring sites according to the type of expected photochemical pollution. The indicators are based on measured ozone volume fractions, the most frequently monitored component of photochemical pollution, and in particular on two contributions: one due to the ratio of daily maximum-to-minimum ozone volume fractions and the other to observed peak values. The two contributions regarded as independent are logically connected by “and” and therefore mathematically combined by multiplication. The criterion of classification is mainly described by the mentioned ratio and incidences of ozone volume fractions exceeding the limit of 80 ppb. Twelve monitoring stations within the European network (Cooperative programme for monitoring and evaluation of long-range transmission of air pollutants in Europe, EMEP) were classified according to this indicator predicting what ozone levels can be expected at the particular sites during the growth season (April through September) into three groups: clean, medium, and polluted, based on the data for the 7 years (1997 to 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the Mediterranean. The Science of the Total Environment, 99, 145–151. doi:10.1016/0048-9697(90)90219-K.

    Article  Google Scholar 

  • Chen, T.-M., Gokhale, J., Shofer, S., & Kuschner, W. G. (2007). Outdoor air pollution: Ozone health effects. The American Journal of the Medical Sciences, 333(4), 244–248. doi:10.1097/MAJ.0b013e31803b8e8c.

    Article  Google Scholar 

  • Cvitaš, T., Kezele, N., Klasinc, L., & Lisac, I. (1995). Ozone measurements in Croatia. Pure and Applied Chemistry, 67, 1450–1453.

    Google Scholar 

  • Fischer, P. H., Brunekreef, B., & Lebret, E. (2004). Air pollution related deaths during the 2003 heat weave in the Netherlands. Atmospheric Environment, 38, 1083–1085. doi:10.1016/j.atmosenv.2003.11.010.

    Article  CAS  Google Scholar 

  • Jeftić, J., & Cvitaš, T. (1991). Analysis of ozone monitoring data. Journal of Mathematical Chemistry, 8, 283–289. doi:10.1007/BF01166943.

    Article  Google Scholar 

  • Ko, F. W. S., Tam, W., Wong, T. W., Lai, C. K. W., Wong, G. W. K., Leung, T.-F., et al. (2007). Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. Clinical and Experimental Allergy, 37, 1312–1319. doi:10.1111/j.1365-2222.2007.02791.x.

    Article  CAS  Google Scholar 

  • Maitre, A., Bonneterre, V., Huillard, L., Sabatier, P., & de Gaudemaris, R. (2006). Impact of urban atmospheric pollution on coronary disease. European Heart Journal, 27, 2275–2284. doi:10.1093/eurheartj/ehl162.

    Article  CAS  Google Scholar 

  • McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology. Oxford: Blackwell Science.

    Google Scholar 

  • Musselman, R. C., & Massman, W. J. (1999). Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmospheric Environment, 33, 65–73. doi:10.1016/S1352-2310(98)00127-7.

    Article  CAS  Google Scholar 

  • Ruidavets, J.-B., Cournot, M., Cassadou, S., Giroux, M., Meybeck, M., & Ferrières, J. (2005). Ozone air pollution is associated with acute myocardial infarction. Cicrulation, 111, 563–569. doi:10.1161/01.CIR.0000154546.32135.6E.

    Article  CAS  Google Scholar 

  • Sarnet, J. A., & Holguin, F. (2007). Asthma and air quality. Current Opinion in Pulmonary Medicine, 13, 63–66.

    Article  Google Scholar 

  • Stedman, J. R. (2004). The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atmospheric Environment, 38, 1087–1090.

    Article  CAS  Google Scholar 

  • Wayne, R. P. (2000). Chemistry of the atmospheres (3rd ed., pp. 422–439). Oxford: Oxford University Press.

    Google Scholar 

  • West, J. J., Szopa, S., & Hauglustaine, D. A. (2007). Human mortality effects of future concentrations of tropospheric ozone. Comptes Rendus Geoscience, 339, 775–783. doi:10.1016/j.crte.2007.08.005.

    Article  CAS  Google Scholar 

  • Zanobetti, A., & Schwartz, J. (2008). Mortality displacement in the association of ozone and mortality: An analysis of 48 cities in the United States. American Journal of Respiratory and Critical Care, 177, 184–189. doi:10.1164/rccm.200706-823OC.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cvitaš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovač-Andrić, E., Šorgo, G., Kezele, N. et al. Photochemical pollution indicators—an analysis of 12 European monitoring stations. Environ Monit Assess 165, 577–583 (2010). https://doi.org/10.1007/s10661-009-0969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0969-7

Keywords

Navigation