Skip to main content
Log in

Non-target effect of organic insecticides: effect of two plant extracts on soil microbial biomass and enzymatic activities in soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Efficacious botanical derivatives can provide an alternative to synthetic pesticides for organic farming systems. However, there is lack of information regarding the side effects of organic pesticides on key soil ecological processes. In this study, we investigated the effects of aqueous extracts from Urginea maritima and Euphorbia myrsinites exhibiting translaminar and systemic activity against pests on microbial biomass and enzymatic activities in soil. Two grams of plant material was extracted with 100 ml of water and then diluted 1:100, 2:100, and 4:100 with distilled water. Diluted plant extracts were applied around hypocotyl of tomato by soil drench. The effect of both plant extracts on microbial biomass C, amount of total N and organic C, and enzymatic activity in soil was significant. After the last application, the highest microbial biomass C was determined in the lowest U. maritima concentration (U 1:100). Soils treated with the highest concentration of U. maritima (U 4:100) had always lower SMBC content than control soil. All concentrations of E. myrsinites decreased microbial biomass C by 18% to 27% compared to the control. Total nitrogen and organic carbon decreased in soils without (control) and with treated U. maritima extract from first application to last application. Phosphatase, urease, and β-glucosidase activities were monitored in plant extract-treated soils. Except U. maritima 1:100 treatments of second and fourth applications, the other treatments of plant extracts negatively affected enzymatic activity in soil. U. maritima and E. myrsinites plant extracts exhibited different effects on soil microbial biomass and activity, probably because of their different chemical contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelgalil, S. A. M., El-Aswad, A. F., & Nakatani, M. (2002). Molluseicidal and anti-feedant activities of diterpenes from Euphorbia paratias L. Pest Management Science, 58, 479–482. doi:10.1002/ps.487.

    Article  CAS  Google Scholar 

  • Addor, R. W. (1995). Insecticides. In C. R. A. Godfrey (Ed.), Agrochemicals from natural products (pp. 1–63). New York: Marcel-Dekker.

    Google Scholar 

  • Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215–221. doi:10.1016/0038-0717(78)90099-8.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E., & Domsch, K. H. (1989). Ratios of microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biology & Biochemistry, 21, 471–479. doi:10.1016/0038-0717(89)90117-X.

    Article  Google Scholar 

  • Anonymous (1996). The regulation of the registration principles of pesticides (11 pp.). Turkey: Publications of The Ministry of Agriculture and Forestry of Turkey.

  • Baath, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379. doi:10.1007/BF00279331.

    Article  CAS  Google Scholar 

  • Bishnu, A., Saha, T., Mazumdar, D., Chakrabarti, K., & Chakraborty, A. (2008). Assessment of the impact of pesticide residues on microbiological and biochemical parameters of tea garden soils in India. Journal of Environmental Science and Health, 43(8), 723–731. doi:10.1080/03601230802388850.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). A recalibration of the hydrometer method for making mechanical analysis of the soils. Agronomy Journal, 54, 419–434.

    Google Scholar 

  • Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55, 11–13.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, R. L. (1978). Urease activity in soils. In R. G. Burns (Ed.), Soil enzymes (pp. 149–196). New York: Academic.

    Google Scholar 

  • Burns, R. G. (1978). History of abiotic soil enzyme research. In R. G. Burns (Ed.), Soil enzymes (pp. 1–33). London: Academic.

    Google Scholar 

  • Burns, R. G. (1982). Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biology & Biochemistry, 14, 423–427. doi:10.1016/0038-0717(82)90099-2.

    Article  CAS  Google Scholar 

  • Castillo, X., & Joergensen, R. G. (2001). Impact of ecological and conventional arable management systems on chemical and biological soil quality indices in Nicaragua. Soil Biology & Biochemistry, 33(12–13), 1591–1597. doi:10.1016/S0038-0717(01)00089-X.

    Article  CAS  Google Scholar 

  • Civelek, H. S. (2003). Investigations on the usage of the some plant extracts on the control of root-knot nematodes (Nematoda) and leafminers (Diptera: Agromyzidae ) on tomatoes in greenhouse conditions in Ortaca (Mugla, Turkey). (pp. 34) Scientific Project Board, Project Number: 00-007, Mugla University.

  • Civelek, H. S., & Weintraub, P. G. (2004). Effects of two plant extracts on larval leafminer Liriomyza trifolii (Diptera: Agromyzidae) in tomatoes. Journal of Economic Entomology, 97(5), 1581–1586.

    Article  CAS  Google Scholar 

  • Dick, R. P. (1994). Soil enzyme activities as indicators of soil quality. Defining soil quality for a sustainable environment, SSSA Special Publication No. 35.

    Google Scholar 

  • Eberle, M. M., Erb, C., Flammer, J., & Meyer, P. (1999). Dermatitis and conjunctivitis after contact with Euphorbia myrsinites (wolf’s milk extract)—a case report. Klinische Monatsblatter fur Augenheilkunde, 215, 203–204. doi:10.1055/s-2008-1034700.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1977). Phospahatases in soils. Soil Biology & Biochemistry, 9, 167–172. doi:10.1016/0038-0717(77)90070-0.

    Article  CAS  Google Scholar 

  • Fraser, D. G., Doran, J. W., Sahs, W. W., & Lesoing, G. W. (1988). Soil microbial population and activities under conventional and organic management. Journal of Environmental Quality, 17(4), 585–590.

    Article  Google Scholar 

  • Girija, V., & Mathan, K. K. (1997). Availability and uptake of nitrogen by sunflower and urease activity in soil due to Cytozyme application. Journal of Oilseeds Research, 14(2), 221–224.

    Google Scholar 

  • Grebneva, N. Y., Potekhina, T. S., Lesiovskaya, E. E., & Kharitonova, N. P. (2000). Anti-microbial activity of water extracts of the herbal mix “Polestell” for pulmonary diseases treatment. Rastitel’nye Resursy, 36(3), 9–18.

    Google Scholar 

  • Gunapala, N., & Scow, K. M. (1998). Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biology & Biochemistry, 30(6), 805–816. doi:10.1016/S0038-0717(97)00162-4.

    Article  CAS  Google Scholar 

  • Hernandez, T., Moral, R., Perez-Espinosa, A., Moreno-Caselles, J., Perez-Murcia, M. D., & Garcia, C. (2002). Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresource Technology, 83, 213–219. doi:10.1016/S0960-8524(01)00224-3.

    Article  CAS  Google Scholar 

  • Hoffmann, G., & Dedekan, M. (1966). Eine Mehode zur kolorimetrischen Bestimmung der - Glucosidaseaktivitaet in Böden. Z.Pflanzenernaehr Bodenkunde, 108, 195–201.

    Google Scholar 

  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India.

    Google Scholar 

  • Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: Measurement and turnover. In E. A. Paul & J. N. Ladd (Eds.), Soil biochemistry (pp. 415–471). New York: Marcel-Dekker.

    Google Scholar 

  • Joergensen, R. G., & Castillo, X. (2001). Interrelationships between microbial and soil properties in young volcanic ash soils of Nicaragua. Soil Biology & Biochemistry, 33, 1581–1589. doi:10.1016/S0038-0717(01)00069-4.

    Article  CAS  Google Scholar 

  • Johnsen, K., Jacobsen, C. S., & Torsvik, V. (2001). Pesticide effects on bacterial diversity in agricultural soils—a review. Biology and Fertility of Soils, 33, 443–453. doi:10.1007/s003740100351.

    Article  CAS  Google Scholar 

  • Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68–72. doi:10.1007/BF00257924.

    Article  CAS  Google Scholar 

  • Koenig, R. T., & Cochran, V. L. (1994). Decomposition and nitrogen mineralization from legume and non-legume crop residues in a subarctic agricultural soil. Biology and Fertility of Soils, 17, 269–275. doi:10.1007/BF00383980.

    Article  Google Scholar 

  • Ladd, J. N., & Butler, J. H. A. (1975). Humus-enzyme systems and synthetic organic polymer-enzyme analogs. In E. A. Paul & A. D. McLaren (Eds.), Soil biochemistry (pp. 143–194). New York: Marcel Dekker.

    Google Scholar 

  • Lin, Q., & Brookes, P. C. (1999). Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils. Soil Biology & Biochemistry, 31, 1999–2014. doi:10.1016/S0038-0717(99)00122-4.

    Article  CAS  Google Scholar 

  • Locher, C. P., Burch, M. T., Mower, H. F., Berestecky, J., Davis, H., Poel, B., et al. (1995). Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. Journal of Ethnopharmacology, 49(1), 23–32. doi:10.1016/0378-8741(95)01299-0.

    Article  CAS  Google Scholar 

  • Magharaj, M., Singleton, I., Kookana, R., & Naidu, R. (1999). Persistence and effects of fenamiphos on native algal populations and enzymatic activities in soil. Soil Biology & Biochemistry, 31, 1549–1553. doi:10.1016/S0038-0717(99)00078-4.

    Article  Google Scholar 

  • Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40, 339–346. doi:10.1016/S0045-6535(99)00218-0.

    Article  CAS  Google Scholar 

  • Murata, T., Nagaishi, N., Hamada, R., Tanaka, H., Sakagami, K., & Kato, T. (1998). Relationship between soil neutral sugar composition and the amount of labile soil organic matter in andisol treated with bark compost of leaf-litter. Biology and Fertility of Soils, 27, 342–348.

    Article  CAS  Google Scholar 

  • Reganold, J. P. (1988). Comparison of soil properties as influenced by organic and conventional farming systems. American Journal of Alternative Agriculture, 3, 144–145.

    Article  Google Scholar 

  • Pozo, C., Martinez-Toledo, M. Y., Salmeron, Y., Rodelas, B., & Gonzales-Lopez, J. (1995). Effect of chlorpyrifos on soil microbial activity. Environmental Toxicology and Chemistry, 14, 187–192. doi:10.1897/1552-8618(1995)14[187:EOCOSM]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Ross, D. J. (1987). Soil microbial biomass estimated by the fumigation–incubation procedure: Seasonal fluctuations and influence of soil moisture content. Soil Biology & Biochemistry, 19, 397–404. doi:10.1016/0038-0717(87)90029-0.

    Article  CAS  Google Scholar 

  • Sannino, F., & Gianfreda, L. (2001). Pesticide influence on soil enzymatic activities. Chemosphere, 45, 417–425. doi:10.1016/S0045-6535(01)00045-5.

    Article  CAS  Google Scholar 

  • Singh, J. S., Raghubanshi, A. S., Singh, R. S., & Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338, 499–500. doi:10.1038/338499a0.

    Article  Google Scholar 

  • Spoerke, D. G., & Temple, A. R. (1979). Dermatitis after exposure to a garden plant (Euphorbia myrsinites). American Journal of Diseases of Children, 133, 28–29.

    CAS  Google Scholar 

  • Sukul, P. (2006). Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biology & Biochemistry, 38, 320–326.

    CAS  Google Scholar 

  • Sundararajan, G. (2002). Control of caterpillar Helicoverpa armigera using botanicals. Journal of Ecotoxicology & Environmental Monitoring, 12, 305–308.

    Google Scholar 

  • U.S. Soil Survey Staff. (1951). Soil survey manual. U.S. Department Agriculture Handbook, No. 8. Washington: U.S. Government Printing Office.

    Google Scholar 

  • Vats, R., & Nandal, S. N. (1993). Effect of different concentrations of leaves extracts of neem and Eucalyptus used as bare-root-dip treatment of tomato seedlings against Meloidogyne incognita. Current Nematology, 4(1), 15–18.

    Google Scholar 

  • Velcheva, N., Atanassov, N., Velchev, V., Vulcheva, R., Karadjova, O., & Velichkova, M. (2001). Toxic action of plant extracts on some pets of economic importance. Bulgarian Journal of Agricultural Science, 7, 133–139.

    Google Scholar 

  • Walkley, A., & Black, I. B. (1934). An examination of the Degtjareff method for determining soil organic matter a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. doi:10.1097/00010694-193401000-00003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Okur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okur, N., Tuna, A.L., Okur, B. et al. Non-target effect of organic insecticides: effect of two plant extracts on soil microbial biomass and enzymatic activities in soil. Environ Monit Assess 165, 389–397 (2010). https://doi.org/10.1007/s10661-009-0954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0954-1

Keywords

Navigation