Skip to main content
Log in

Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Organophosphates are known to inhibit the enzyme acetylcholinesterase. In this study, the AChE activity from the total soft tissues of Corbicula fluminea Mull. was used as a biomarker of organophosphate pollution in Pinacanauan River. Clams were collected from two different sites and at different seasons of the year. A colorimetric assay on the total soft tissues of the clams showed a directly proportional relationship between enzyme activity and condition of the riverine system. In vitro experiments on the total soft tissue, adductor muscles, digestive glands, and gills were conducted to assess the degree of localization of AChE as well as the sensitivity and tolerance of the enzymes in these tissues to varying concentrations of malathion. The degree of enzyme localization from highest to lowest is as follows: adductor muscle > gills > digestive gland whereas sensitivity to OP from greatest to least is: gills > adductor muscles > digestive gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, V. D. (1990). Water and wastewater examination manual. Michigan: Lewis.

    Google Scholar 

  • Barnes, S., & Riggert, C. (2000). Tracking Missouri’s exotics. Missouri Conservationist, 61, 8–13.

    Google Scholar 

  • Bedford, J. W., Reloffs, E. W., & Zabik, M. J. (1968). The freshwater mussel as a biological monitor of pesticide concentration in lotic environment. Limnology and Oceanography, 13, 118–136.

    Article  Google Scholar 

  • Bonacci, S., Browne, M. A., Dissanayake, A., Hagger, J. A., Corsi, I., Focardi, S., et al. (2004). Esterase activities in the bivalve mollusk Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment. Marine Pollution Bulletin, 49, 445–455. doi:10.1016/j.marpolbul.2004.02.033.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 258–254. doi:10.1016/0003-2697(76)90527-3.

    Article  Google Scholar 

  • Brown, M., Davies, I. M., Moffat, C. F., Redshaw, J., & Craft, J. A. (2004). Characterization of choline esterases and their tissue and subcellular distribution in the mussel (Mytilus edulis). Marine Environmental Research, 57, 155–169. doi:10.1016/S0141-1136(03)00067-9.

    Article  CAS  Google Scholar 

  • Cairns, M. S., Maguire, C. C., Williams, B. A., & Bennett, J. K. (1991). Brain cholinesterase activity of bobwhite acutely exposed to chlorpyrifos. Environmental Toxicology and Chemistry, 10, 657–664. doi:10.1897/1552-8618(1991)10[657:BCAOBA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Cataldo, D. H., Boltovskoy, D., Stripeikis, J., & Pose, M. (2001). Condition index and growth rates of field caged Corbicula fluminea (Bivalvia) as biomarkers of pollution gradients in the Paraná River Delta, Argentina. Aquatic Ecosystem Health & Management, 4(2), 187–201. doi:10.1080/14634980127712.

    Article  Google Scholar 

  • Cooper, N. L., & Bidwell, J. (2006). Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide. Aquatic Toxicology (Amsterdam, Netherlands), 76(3–4), 258–267. doi:10.1016/j.aquatox.2005.09.012.

    CAS  Google Scholar 

  • Day, K. E., & Scott, I. M. (1990). Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquatic Toxicology (Amsterdam, Netherlands), 8, 101–114. doi:10.1016/0166-445X(90)90021-G.

    Google Scholar 

  • Dellali, M., Barelli, M. G., Romeo, M., & Aissa, P. (2001). The use of cholinesterase activity in Ruditapes decussates and Mytilus galloprovincialis in the biomonitoring of Bizerta lagoon. Comparative Biochemistry and Physiology, 130(Part C), 227–235. doi:10.1016/S1096-4959(01)00426-2.

    CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. O., Anders, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. doi:10.1016/0006-2952(61)90145-9.

    Article  CAS  Google Scholar 

  • Escartin, E., & Porte, C. (1997). The use of cholinesterase and carboxylase activities from Mytilus galloprovincialis in pollution monitoring. Environmental Toxicology and Chemistry, 16, 2090–2095. doi:10.1897/1551-5028(1997)016<2090:TUOCAC>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Eto, M. (1974). Organophosphorus pesticides: Organic and biological chemistry. Cleveland: CRC.

    Google Scholar 

  • Galloway, T. S., & Depledge, M. H. (2001). Immunotoxicity in invertebrates: Measurement and ecotoxicological relevance. Ecotoxicology (London, England), 10, 5–23. doi:10.1023/A:1008939520263.

    CAS  Google Scholar 

  • Galloway, T. S., Millward, N., Brown, M. A., & Depledge, M. H. (2002). Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusk Mytilus edulis using combined esterase activities as biomarkers. Aquatic Toxicology (Amsterdam, Netherlands), 61, 169–180. doi:10.1016/S0166-445X(02)00051-6.

    CAS  Google Scholar 

  • Gupta, R. C., Patterson, G. T., & Dettbarn, W. D. (1985). Mechanisms involved in the development of tolerance to DFP toxicity. Fundamental and Applied Toxicology, 5, 517–528. doi:10.1016/0272-0590(85)90111-3.

    Article  Google Scholar 

  • Hartley, D. M., & Johnston, J. B. (1983). Use of the freshwater clam, Corbicila manilensis as a monitor for organochlorine pesticide. Bulletin of Environmental Contamination and Toxicology, 31, 33–40. doi:10.1007/BF01608763.

    Article  CAS  Google Scholar 

  • Hawkins, A. J. S., Smith, R. F. M., Tam, S. H., & Yasin, Z. B. (1998). Suspension-feeding behavior of tropical bivalve mollusk, Perna viridis, Crassostrea belcheri, Crassostrea iradelei, Saccostrea cuculata, Pinctada margariferia. Marine Ecology Progress Series, 66, 173–185. doi:10.3354/meps166173.

    Article  Google Scholar 

  • Jokanovic, M., Kosanovic, M., & Maksimovic, M. (1996). Interaction of the organophosphorous compounds with carboxylesterases in the rat. Archives of Toxicology, 70, 444–450. doi:10.1007/s002040050297.

    Article  CAS  Google Scholar 

  • Lau, P. S., & Wong, H. L. (2004). Effects of size, tissue parts and location on six biochemical markers in the green-lipped mussel, Perna viridis. Marine Pollution Bulletin, 46, 1563–1572. doi:10.1016/S0025-326X(03)00321-7.

    Article  CAS  Google Scholar 

  • Lehtonen, K. K., & Leinio, S. (2003). Effects of exposure to copper and malathion on metallothionien levels and acetylcholinesterase activity of the mussel Mytilus edulis and the clam Macoma baltica from the Northern Baltic Sea. Bulletin of Environmental Contamination and Toxicology, 79, 489–496. doi:10.1007/s00128-003-8853-6.

    Article  CAS  Google Scholar 

  • Liao, C. M., Jou, L. J., & Chen, B. C. (2005). Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals. Environmental Pollution, 135(1), 41–52. doi:10.1016/j.envpol.2004.10.015.

    Article  CAS  Google Scholar 

  • Maxwell, D. M. (1992). Detoxification of organophosphorous compounds by carboxylesterase. In J. E. Chambers & P. E. Levi (Eds.), Organophosphates chemistry fate and effects. San Diego: Academic.

    Google Scholar 

  • McHenery, J. G., Lindley-Adams, G. E., Moore, D. C., Rodger, G. K., & Davies, I. M. (1997). Experimental and field studies of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel, Mytilus edulis L. Aquatic Toxicology (Amsterdam, Netherlands), 38, 125–143. doi:10.1016/S0166-445X(96)00834-X.

    CAS  Google Scholar 

  • McMahon, R. F. (2001). Mollusca: Bivalvia. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (2nd ed., pp. 331–430, pp. 1056). San Diego: Academic.

    Google Scholar 

  • McMahon, R. F., & Williams, C. J. (1986). Growth, life cycle, upper thermal limit and downstream colonization rates in a natural population of the freshwater bivalve molluscs, Corbicula fluminea (Muller) receiving thermal effluents. American Malacological Bulletin, Special Ed. No. 2, 231–239.

  • Mora, P., Fournier, D., & Narbonne, J. F. (1999). Cholinesterases from the marine mussels Mytilus galloprovincialis Lmk. and Mytilus edulis L. and from the freshwater bivalve Corbicula fluminea Mull. Comparative Biochemistry and Physiology, 122(3), 353–361.

    CAS  Google Scholar 

  • Muncaster, B. W., Hebert, P. D. N., & Lazar, R. (1990). Biological and physiological factors affecting the body burden of organic contaminants in freshwater mussels. Archives of Environmental Contamination and Toxicology, 19, 25–34. doi:10.1007/BF01059809.

    Article  CAS  Google Scholar 

  • NPAL Philippines (1990). In house method on determination of organophosphate pesticides in water by gas chromatography with a nitrogen–phosphorus detector. Manila: National Pesticide Analytical Laboratory, Bureau of Plant Industry, Department of Agriculture.

    Google Scholar 

  • Owen, R., Buxton, L., Sarkis, S., Toaspern, N., Knap, A., & Depledge, M. (2002). An evaluation of hemolymph cholinesterase activities in the tropical scallop, Euvola ziczac, for the rapid assessment of pesticide exposure. Marine Pollution Bulletin, 44, 110–117.

    Google Scholar 

  • Parkinson, A. (1996). Biotransformation of xenobiotics. In C. D. Klaasen (Ed.), Casarett and Doull’s toxicology. The basic science of poisons (5th ed., pp. 230–278). New York: McGraw Hill.

    Google Scholar 

  • Pereira, W. E., Domagalski, J. L., & Hostettler, F. D. (1996). Occurrence and accumulation of pesticides and organic contaminants in river sediments, water and clam tissues from the San Joaquin River and tributaries, California. Environmental Toxicology and Chemistry, 5, 172–180. doi:10.1897/1551-5028(1996)015<0172:OAAOPA>2.3.CO;2.

    Article  Google Scholar 

  • Pfeifer, S., Schiedek, D., & Dippner, J. W. (2005). Effect of temperature and salinity on AChE activity, a common pollution biomarker in Mytilus sp. from South Western Baltic Sea. Journal of Experimental Marine Biology and Ecology, 320, 93–103. doi:10.1016/j.jembe.2004.12.020.

    Article  CAS  Google Scholar 

  • Simon, O., & Laplace, J. G. (2004). Kinetic analysis of uranium accumulation in the bivalve Corbicula fluminea: Effect of pH and direct exposure levels. Aquatic Toxicology (Amsterdam, Netherlands), 68(2), 95–108. doi:10.1016/j.aquatox.2004.03.002.

    CAS  Google Scholar 

  • Smith, V. J. (1991). Invertebrate immunology, phylogenetic, ecotoxicological and biomedical implications. Comparative Haematology International, 1, 61–76. doi:10.1007/BF00422876.

    Article  Google Scholar 

  • Soucek, D. J., Schimdt, T. S., & Cherry, D. S. (2001). In situ studies with the Asian clams, Corbicula fluminea to detect acid mine drainage and nutrient inputs in low order streams. Canadian Journal of Fisheries and Aquatic Sciences, 58, 602–608. doi:10.1139/cjfas-58-3-602.

    Article  CAS  Google Scholar 

  • Varela, V. W., & Ausperger, T. (1996). Cholinesterase activity as a device for biomonitoring pesticide exposure in the freshwater mussel, Elliptio complanata (pp. 110–115). Raleigh: US Fish and Wildlife Service.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly S. Beltran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltran, K.S., Pocsidio, G.N. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines. Environ Monit Assess 165, 331–340 (2010). https://doi.org/10.1007/s10661-009-0949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0949-y

Keywords

Navigation