Skip to main content

Advertisement

Log in

Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monte Carlo simulations were performed using the GEANT4 code for the investigation of γ-ray absorption in water in different spherical geometries and of the efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment. In order to test the reliability of these simulations, experimental values of the NaI(Tl) detector efficiency were deduced and seem to be in good agreement with the simulated ones. In addition, using the simulated efficiency, an algorithm was developed to determine the minimum detectable activity in becquerels per cubic meter in situ as a function of energy for typical freshwater and seawater spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aakenes, U. R. (1995). Radioactivity monitored from moored oceanographic buoys. Chemistry and Ecology, 10, 61–69. doi:10.1080/02757549508035330.

    Article  CAS  Google Scholar 

  • Aničin, I. V., & Yap, C. T. (1987). New approach to detection limit determination in spectroscopy. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 259, 525–528. doi:10.1016/0168-9002(87)90835-7.

    Article  Google Scholar 

  • Baranov, I., Kharitonov, I., Laykin, A., & Olshansky, Y. (2003). Devices and methods used for radiation monitoring of sea water during salvage and transportation of the Kursk nuclear submarine to dock. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 439–443. doi:10.1016/S0168-9002(03)01116-1.

    Article  CAS  Google Scholar 

  • Berger, M. J., & Hubell, J. H. (1995). XCOM: Photon cross sections, with a personal computer. NBSIR 87-3597.

  • CERN (1993). GEANT detector description and simulation tool. Geneva: CERN Program Library Office.

  • Crespin, S., De Freitas, D., Brette, P., Falvard, A., & Maublant, J. (2004). Assessment of a simulation software for scintillation detector. Nuclear Instruments and Methods A, 527, 206–210. doi:10.1016/j.nima.2004.03.121.

    Article  CAS  Google Scholar 

  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40, 586–593. doi:10.1021/ac60259a007.

    Article  CAS  Google Scholar 

  • Currie, L. A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure and Applied Chemistry, 67, 1699–1723. doi:10.1351/pac199567101699.

    Article  CAS  Google Scholar 

  • Debertin, K., & Helmer, R. G. (1988). Gamma- and x-ray spectrometry with semiconductor detectors. Amsterdam: North-Holland.

    Google Scholar 

  • Fayez, H. H., & Al-Ghorabie. (2006). Development of a computer code using the EGS4 Monte Carlo simulation system to evaluate the response of a NaI(Tl) detector to photons with energies below 300 keV. Applied Radiation and Isotopes, 64, 85–92. doi:10.1016/j.apradiso.2004.12.013.

    Article  Google Scholar 

  • Ghanem, S. A. (2000). Monte Carlo calculations of the response features for NaI detectors. Applied Radiation and Isotopes, 53, 877–880. doi:10.1016/S0969-8043(00)00257-8.

    Article  CAS  Google Scholar 

  • Gilmore, G., & Hemingway, J. (2000). Practical gamma-ray spectrometry. New York: Wiley.

    Google Scholar 

  • Hurtado, S., Garcia-Leon, M., & Garcia-Tenorio, R. (2004). GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nuclear Instruments and Methods A, 518, 764–774. doi:10.1016/j.nima.2003.09.057.

    Article  CAS  Google Scholar 

  • Karamanis, D. (2003). Efficiency simulation of HpGe and Si(Li) detectors in γ- and X-ray spectroscopy. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 282–285. doi:10.1016/S0168-9002(03)01069-6.

    Article  CAS  Google Scholar 

  • Klusoň, J. (2001). Environmental Monitoring and in-situ gamma spectrometry. Radiation Physics and Chemistry, 61, 209–216. doi:10.1016/S0969-806X(01)00242-0.

    Article  Google Scholar 

  • Nir-El, Y., & Haquin, G. (2001). Minimum detectable activity in in situ γ-ray spectrometry. Applied Radiation and Isotopes, 55, 197–203. doi:10.1016/S0969-8043(00)00377-8.

    Article  CAS  Google Scholar 

  • Mertens, C., De Lellis, C., Van Put, P., & Tondeur, F. (2007). MCNP simulation and spectrum unfolding for an NaI monitor of radioactivity in aquatic systems. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 580, 118–122. doi:10.1016/j.nima.2007.05.049.

    Article  CAS  Google Scholar 

  • Ocone, R., Kostezh, A., Kurinenko, V., Tyshchenko, A., Derkash, G., & Leone, P. (2004). Substrate characterization for underwater spectrometry: tank measurements results utilizing efficiencies calculated via Monte Carlo code. Applied Radiation and Isotopes, 61, 129–132. doi:10.1016/j.apradiso.2004.03.033.

    Article  CAS  Google Scholar 

  • Osvath, I., Povinec, P. P., Livingston, H. D., Ryan, T. P., Muslow, S., & Commanducci, J.-F. (2005). Monitoring of radioactivity in NW Irish Sea water using a stationary underwater gamma-ray spectrometer with satellite data transmission. Journal of Radioanalytical and Nuclear Chemistry, 263, 437–440.

    CAS  Google Scholar 

  • Povinec, P. P., Osvath, I., & Baxter, M. S. (1996). Underwater gamma-spectrometry with HpGe and NaI(Tl) detectors. Applied Radiation and Isotopes, 47, 1127–1133. doi:10.1016/S0969-8043(96)00118-2.

    Article  CAS  Google Scholar 

  • Shi, Q., Zhang, J., Chang, Y., & Qian, S. (2005). Comparison between summing-up algorithms to determine areas of small peaks on high baselines. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 555, 220–224. doi:10.1016/j.nima.2005.09.013.

    Article  CAS  Google Scholar 

  • Soukissian, T. H., Chronis, G. T., & Nittis, K. (1999). POSEIDON: Operational marine monitoring system for Greek seas. Sea Technology, 40, 31–37.

    Google Scholar 

  • Srinivasan, P., Raman, A., & Sharma, D. N. (2001). Assement of calibration parameters for an aerial gamma spectrometry system using Monte Carlo technique. Environmental Monitoring and Assessment, 75, 73–85.

    Google Scholar 

  • Tsabaris, C., & Ballas, D. (2005). On line gamma-ray spectrometry at open sea. Applied Radiation and Isotopes, 62, 83–89. doi:10.1016/j.apradiso.2004.06.007.

    Article  CAS  Google Scholar 

  • Tsabaris, C., Bagatelas, C., Dakladas, T., Papadopoulos, C. T., Vlastou, R., & Chronis, G. T. (2008). An autonomous in situ detection system for radioactivity measurements in the marine environment. Applied Radiation and Isotopes, 66, 1419–1426. doi:10.1016/j.apradiso.2008.02.064.

    Article  CAS  Google Scholar 

  • van Put, P., Debauche, A., De Lellis, C., & Adam, V. (2004). Performance level of an autonomous system of continuous monitoring of radioactivity in seawater. Journal of Environmental Radioactivity, 72, 177–186. doi:10.1016/S0265-931X(03)00200-5.

    Article  Google Scholar 

  • Vlachos, D. S., & Tsabaris, C. (2005). Response function calculation of an underwater gamma ray NaI(Tl) spectrometer. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 539, 414–420. doi:10.1016/j.nima.2004.10.001.

    Article  CAS  Google Scholar 

  • Vlastou, R., Ntziou, I. T., Kokkoris, M., Papadopoulos, C. T., & Tsabaris, C. (2006). Monte Carlo simulation of γ-ray spectra from natural radionuclides recorded by a NaI detector in the marine environment. Applied Radiation and Isotopes, 64, 116–123. doi:10.1016/j.apradiso.2005.07.011.

    Article  CAS  Google Scholar 

  • Vojtyla, P. (2001). Calibration of monitors used for surveillance of radioactivity in effluent water from CERN’s accelerator installations. Applied Radiation and Isotopes, 55, 81–88. doi:10.1016/S0969-8043(00)00361-4.

    Article  CAS  Google Scholar 

  • Wedekind, C., Schilling, G., Grüttmüller, M., & Becker, K. (1999). Gamma-radiation monitoring network at sea. Applied Radiation and Isotopes, 50, 733–741. doi:10.1016/S0969-8043(98)00062-1.

    Article  CAS  Google Scholar 

  • Weise, K., Hübel, K., Rose, E., Schläger, M., Schrammel, D., Täschner, M., et al. (2006). Bayesian decision threshold, detection limit and confidence limits in ionising-radiation measurement. Radiation Protection Dosimetry, 121, 52–63. doi:10.1093/rpd/ncl095.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tsabaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagatelas, C., Tsabaris, C., Kokkoris, M. et al. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ Monit Assess 165, 159–168 (2010). https://doi.org/10.1007/s10661-009-0935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0935-4

Keywords

Navigation