Skip to main content

Advertisement

Log in

Similarities and differences of metal distributions in the tissues of molluscs by using multivariate analyses

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Multivariate analysis including correlation, multiple stepwise linear regression, and cluster analyses were applied to investigate the heavy metal concentrations (Cd, Cu, Fe, Ni, Pb, and Zn) in the different parts of bivalves and gastropods. It was also aimed to distinguish statistically the differences between the marine bivalves and the gastropods with regards to the accumulation of heavy metals in the different tissues. The different parts of four species of bivalves and four species of gastropods were obtained and analyzed for heavy metals. The multivariate analyses were then applied on the data. From the multivariate analyses conducted, there were correlations found between the soft tissues of bivalves and gastropods, but none was found between the shells and the soft tissues of most of the molluscs (except for Cerithidea obtusa and Puglina cochlidium). The significant correlations (P < 0.05) found between the soft tissues were further complemented by the multiple stepwise linear regressions where heavy metals in the total soft tissues were influenced by the accumulation in the different types of soft tissues. The present study found that the distributions of heavy metals in the different parts of molluscs were related to their feeding habits and living habitats. The statistical approaches proposed in this study are recommended for use in biomonitoring studies, since multivariate analyses can reduce the cost and time involved in identifying an effective tissue to monitor the heavy metal(s) bioavailability and contamination in tropical coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • AbdAllah, A. T., & Moustafa, M. A. (2002). Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy. Environmental Pollution, 116, 185–191. doi:10.1016/S0269-7491(01)00137-3.

    Article  CAS  Google Scholar 

  • Amiard-Triquet, C., & Amiard, J. C. (1998). Influence of ecological factors on accumulation of metal mixture. In W. J. Langston & M. J. Bebianno (Eds.), Metal metabolism in aquatic environments (pp. 351–386). London: Chapman and Hall.

    Google Scholar 

  • Bebianno, M. J., & Langston, W. J. (1995). Induction of metallothionein synthesis in the gill and kidney of Littorina littorea exposed to cadmium. Journal of the Marine Biological Association of the United Kingdom, 75, 173–186.

    Article  CAS  Google Scholar 

  • Bebianno, M. J., & Serafim, M. A. (2003). Variation of metal and metallothionein concentrations in a natural population of Ruditapes decussatus. Archives of Environmental Contamination and Toxicology, 44, 53–66. doi:10.1007/s00244-002-2004-7.

    Article  CAS  Google Scholar 

  • Brady, J. E., Russell, J. W., & Holum, J. R. (2000). Chemistry, matter and its changes (p. 75). New York: Wiley.

    Google Scholar 

  • Choi, H. J., Ahn, I. Y., Kim, K. W., Lee, Y. S., Lee, I. S., & Jeong, K. H. (2003). Subcellular accumulation of Cu in the Antarctic bivalve Laternula elliptica from a naturally Cu-elevated bay of King George Island. Polar Biology, 26, 601–609. doi:10.1007/s00300-003-0529-5.

    Article  Google Scholar 

  • Chong, K., & Wang, W. X. (2000). Assimilation of cadmium, chromium, and zinc by the green mussel Perna viridis and the clam Ruditapes philippinarum. Environmental Toxicology and Chemistry, 19, 1660–1667. doi:10.1897/1551-5028(2000)019<1660:AOCCAZ>2.3.CO;2.

    CAS  Google Scholar 

  • Coetzee, L., Du Preez, H. H., & Van Vuren, J. H. J. (2002). Metal concentration in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifant River, Mpumalanga, South Africa: Zinc, copper manganese, lead, chromium, nickel, aluminium and iron (p. 16). South Africa: Rand Afrikaans University.

    Google Scholar 

  • Conti, M. E., & Cecchetti, G. (2003). A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research, 93, 99–112. doi:10.1016/S0013-9351(03)00012-4.

    Article  CAS  Google Scholar 

  • Diaz, R. V., Aldape, J., & Flores, M. (2002). Identification of airborne particulate sources, of samples collected in Ticoman, Mexico, using PIXE and multivariate and multivariate analysis. Nuclear Instrument Methodology Physiology Research. Beam Interaction Material Atom, 189, 249–253.

    CAS  Google Scholar 

  • Dick, D., Philipp, E., Kriews, M., & Abele, D. (2007). Is the Umbo matrix of bivalve shells (Laternula elliptica) a climate archive? Aquatic Toxicology (Amsterdam, Netherlands), 84, 450–456. doi:10.1016/j.aquatox.2007.07.005.

    CAS  Google Scholar 

  • Dragovic, S., Mihailovic, N., & Gajic, B. (2008). Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72, 491–495. doi:10.1016/j.chemosphere.2008.02.063.

    Article  CAS  Google Scholar 

  • Foster, P., & Chacko, J. (1995). Minor and trace elements in the shell of Patella vulgata (L.). Marine Environmental Research, 40, 55–76. doi:10.1016/0141-1136(94)00005-A.

    Article  CAS  Google Scholar 

  • George, S. G. (1982). Subcellular accumulation and detoxification of metals in aquatic animals. In W. B. Vernberg (Ed.), Physiological mechanisms of marine pollutants (pp. 3–52). Oxford: Academic.

    Google Scholar 

  • Gundacker, C. (1999). Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere, 38, 3339–3356. doi:10.1016/S0045-6535(98)00567-0.

    Article  CAS  Google Scholar 

  • Hamed, M. A., & Emara, A. M. (2006). Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. Journal of Marine Systems, 60, 220–234. doi:10.1016/j.jmarsys.2005.09.007.

    Article  Google Scholar 

  • Kershaw, D. R. (1983). Animal diversity. Britain: University Tutorial Press Limited.

    Google Scholar 

  • Kinnear, P. R., & Gray, C. D. (2000). SPSS for windows made simple, release 10. University of Aberdeen, UK: Psychology Press.

    Google Scholar 

  • Kulahci, F., & Sen, Z. (2008). Multivariate statistical analyses of artificial radionuclides and heavy metals contaminations in deep mud of Keban Dam Lake, Turkey. Application of Radiation Isotope, 66, 236–246. doi:10.1016/j.apradiso.2007.08.014.

    Article  CAS  Google Scholar 

  • Leung, K. M. Y., Dewhurst, R. E., Halldorsson, H., & Svavarsson, J. (2005). Metallothioneins and trace metals in the dogwhelk Nucella lapillus (L.) collected from Icelandic coasts. Marine Pollution Bulletin, 51, 729–737. doi:10.1016/j.marpolbul.2005.04.013.

    Article  CAS  Google Scholar 

  • Mason, A. Z., & Simkiss, K. (1983). Interaction between metals and their distribution in tissues of Littorina littorina (L) collected from clean and polluted sites. Journal Marine Biology Association, 63, 661–672.

    Article  CAS  Google Scholar 

  • Mason, A. Z., & Jenkin, K. D. (1995). Metal detoxification in aquatic organisms. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 479–608). Chechester: Wiley.

    Google Scholar 

  • Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872. doi:10.1016/j.chemosphere.2006.03.016.

    Article  CAS  Google Scholar 

  • Miranda, J., Andrade, E., Lopez-suarez, A., Ledesma, T. R., Cahill, A., & Wakabayashi, P. H. (1996). A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmospheric Environment, 30(20), 3471–3479. doi:10.1016/1352-2310(95)00477-7.

    Article  CAS  Google Scholar 

  • Newell, N. D. (1969). Bivalvia systematics. In R. C. Moore (Ed.), Treatise on invertebrate paleontology Part N: Mollusca. Boulder, CA: Geological Society of America.

    Google Scholar 

  • Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of trace aquatic contaminants. London: Elsevier Applied Science.

    Google Scholar 

  • Pitts, L. C., & Wallace, G. T. (1994). Lead deposition in the shell of the bivalve, Mya arenaria: An indicator of dissolved lead in seawater. Estuarine, Coastal and Shelf Science, 39, 93–104. doi:10.1006/ecss.1994.1051.

    Article  CAS  Google Scholar 

  • Ponder, A., & Lindberg, B. (1997). Towards a phylogeny of gastropod mollusks: An analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83–2651. doi:10.1111/j.1096-3642.1997.tb00137.x.

    Article  Google Scholar 

  • Pourang, N., & Dennis, J. H. (2005). Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of methallothionein in their redistribution. Environment International, 31, 325–341.

    Article  CAS  Google Scholar 

  • Pourang, N., Tanabe, S., Rezvani, S., & Dennis, J. H. (2005). Trace elements accumulation in edible tissues of five sturgeon species from the Caspian Sea. Environmental Monitoring and Assessment, 100, 89–108. doi:10.1007/s10661-005-7054-7.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192. doi:10.1016/0025-326X(95)00116-5.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (1998). Phylogeny of trace metal accumulation in crustaceans. In W. J. Langston & M. Bebianno (Eds.), Metal metabolism in aquatic environments (pp. 285–319). London: Chapman and Hall.

    Google Scholar 

  • Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120, 497–450. doi:10.1016/S0269-7491(02)00238-5.

    Article  CAS  Google Scholar 

  • Rainbow, P. S., & Blackmore, G. (2000). Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: Changes in space and time. Marine Environmental Research, 51, 441–463. doi:10.1016/S0141-1136(00)00254-3.

    Article  Google Scholar 

  • Roesijadi, G. (1982). Uptake and incorporation of mercury-binding proteins of gills of Mytilus edulis as a function of time. Marine Biology (Berlin), 66, 151–157. doi:10.1007/BF00397188.

    Article  CAS  Google Scholar 

  • Saavedra, Y., González, A., Fernández, P., & Blanco, J. (2004). Interspecific variation of metal concentrations in three bivalve molluscs from Galicia. Archives of Environmental Contamination and Toxicology, 47, 341–351. doi:10.1007/s00244-004-3021-5.

    Article  CAS  Google Scholar 

  • Sato, M., Ireland, M. P., & Marigómez, I. (1997). The contribution of metal/shell-weight index in target-tissues to metal body burden in sentinel marine molluscs. 2. Mytilus galloprovincialis. The Science of the Total Environment, 198, 149–160. doi:10.1016/S0048-9697(97)05451-X.

    Article  Google Scholar 

  • Schneider, J. A. (2001). Bivalve systematics during the 20th century. Journal of Paleontology, 75(6), 1119–1127. doi:10.1666/0022-3360(2001)075%3C1119:BSDTC%3E2.0.CO;2.

    Article  Google Scholar 

  • Simeonov, V., Massart, D. L., Adreev, G., & Tsakovski, S. (2000). Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’ sediments from the Black Sea. Chemosphere, 41, 1411–1417. doi:10.1016/S0045-6535(99)00540-8.

    Article  CAS  Google Scholar 

  • Simkiss, K., & Taylor, M. G. (1995). Transport of metals across membranes. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic system (pp. 2–44). Chichester: Wiley.

    Google Scholar 

  • Stijn Ghesquiere, A. I. (2005). Applesnails. Retrieved on February 2007. www.applesnail.net.

  • Strong, E. E., Gargominy, O., Ponder, W. F., & Bouchet, P. (2008). Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia, 595, 149–166. doi:10.1007/s10750-007-9012-6.

    Article  Google Scholar 

  • Szefer, P. (2003). Application of chemometric techniques in analytical evaluation of logical and environmental samples. In J. Namiesnik, W. Chrzanowski & P. Zmijewska (Eds.), New horizons and challenges in environmental analysis and monitoring (pp. 355–388). Gdansk, Poland: CEEAM.

    Google Scholar 

  • Szefer, P., Fowler, S. W., Ikuta, K., Osuna Paez, F., Ali, A. A., Lim, B.-S., et al. (2006). A comparative assessment of heavy metal accumulation in soft parts and byssus of mussels from subarctic, temperate, subtropical and tropical marine environments. Environmental Pollution, 139, 70–78. doi:10.1016/j.envpol.2005.04.031.

    Article  CAS  Google Scholar 

  • Tynan, S., Eggins, S., Kinsley, L., Welch, S. A., & Kirste, D. (2005). Mussel shells as environmental tracers: An example from the Loveday Basin. In I. C. Roach (Ed.), Regolith 2005—Ten years of CRC LEME (pp. 314–317). CRC LEME.

  • Viarengo, A., Palmero, S., Zanicchi, G., Capelli, R., Vaissiere, R., & Orunesu, M. (1985). Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis (Lam.). Marine Environmental Research, 16, 23–36. doi:10.1016/0141-1136(85)90018-2.

    Article  CAS  Google Scholar 

  • Walsh, K., Dunstan, R. H., & Murdoch, R. N. (1995). Differential bioaccumulation of heavy metals and organopollutants in the soft tissue and shell of the marine gastropod, Austrocochlea constricta. Archives of Environmental Contamination and Toxicology, 28, 35–39. doi:10.1007/BF00213966.

    Article  CAS  Google Scholar 

  • Wang, W.-X., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. The Science of the Total Environment, 237/238, 459–472. doi:10.1016/S0048-9697(99)00158-8.

    Article  CAS  Google Scholar 

  • Wang, W.-X., Fisher, N. S., & Louma, S. N. (1996). Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Marine Ecology Progress Series, 140, 91–113. doi:10.3354/meps140091.

    Article  CAS  Google Scholar 

  • Wright, D. A. (1995). Trace metal and major ion interactions in aquatic animals. Marine Pollution Bulletin, 31, 8–18. doi:10.1016/0025-326X(95)00036-M.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Edward, F. B., Tan, S. G., & Siraj, S. S. (2006a). Use of different soft tissues of Perna viridis as biomonitors of bioavailability and contamination by Heavy metals (Cd, Cu, Fe, Pb, Ni and Zn) in a semi-enclosed intertidal water, the Johore Straits. Toxicological and Environmental Chemistry, 88(4), 683–695. doi:10.1080/02772240600874139.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Edward, F. B., Tan, S. G., & Siraj, S. S. (2006b). Use of different soft tissues of Perna viridis as biomonitors of bioavailability and contamination by heavy metals (Cd, Cu, Fe, Pb, Ni and Zn) in a semi-enclosed intertidal water, the Johore Straits. Toxicological and Environmental Chemistry, 88(4), 683–695. doi:10.1080/02772240600874139.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., & Tan, S. G. (2003c). Accumulation, depuration and distribution of cadmium and zinc in the green-lipped mussel Perna viridis (L.) under laboratory conditions. Hydrobiologia, 498, 151–160. doi:10.1023/A:1026221930811.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., & Tan, S. G. (2003d). Different soft tissues of the green-lipped mussel Perna viridis (L.). as biomonitoring agent of copper: Field and laboratory studies. Malaysian Applied Biology, 32(2), 9–18.

    Google Scholar 

  • Yap, C. K., Ismail, A., Tan, S. G., & Abdul Rahim, I. (2003e). Can the shell of the green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn? Estuarine, Coastal and Shelf Science, 57, 623–630. doi:10.1016/S0272-7714(02)00401-8.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Tan, S. G., & Rahim Ismail, A. (2004). Assessment of different soft tissues of the green-lipped mussel Perna viridis (L.). as biomonitoring agent of Pb: Field and laboratory studies. Water, Air, and Soil Pollution, 153, 253–268. doi:10.1023/B:WATE.0000019946.84885.94.

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. The Science of the Total Environment, 355, 176–186. doi:10.1016/j.scitotenv.2005.02.026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chee Kong Yap or Franklin Berandah Edward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yap, C.K., Edward, F.B. & Tan, S.G. Similarities and differences of metal distributions in the tissues of molluscs by using multivariate analyses. Environ Monit Assess 165, 39–53 (2010). https://doi.org/10.1007/s10661-009-0925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0925-6

Keywords

Navigation