Skip to main content

Advertisement

Log in

An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amezaga, I., & Onaindia, M. (1997). The effect of evergreen and deciduous coniferous plantations on the field layer and seed bank of native woodlands. Ecography, 20, 308–318. doi:10.1111/j.1600-0587.1997.tb00375.x.

    Article  Google Scholar 

  • Anderson, J. M., & Ingram, J. S. (1993). Tropical soil biology and fertility: A handbook of methods, (2nd ed., pp. 30–40). Oxon: CAB International.

    Google Scholar 

  • Augusto, L., Dupouey, J. L., & Ranger, J. (2003). Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Science, 60, 823–831. doi:10.1051/forest:2003077.

    Article  Google Scholar 

  • Barbier, S., Gosselin, F., & Balandier, P. (2008). Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. Forest Ecology and Management, 254, 1–15. doi:10.1016/j.foreco.2007.09.038.

    Article  Google Scholar 

  • Bergelson, J. (1990). Life after death: site preemption by the remains of Poa annua. Ecology, 71, 2157–2165. doi:10.2307/1938629.

    Article  Google Scholar 

  • Brothers, T. S. (1993). Fragmentation and edge effects in central Indiana old-growth forests. Natural Areas Journal, 13, 268–274.

    Google Scholar 

  • Davidson, E. A., Carvalho, C. J. R., & Vieira, I. C. G. (2004). Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications, 14, S150–S163. doi:10.1890/01-6006.

    Article  Google Scholar 

  • Dodd, N. L., Schweinsburg, R. E., & Boe, S. (2006). Landscape-scale forest habitat relationships to tassel-eared squirrel populations: Implications for ponderosa pine forest restoration. Restoration Ecology, 14, 537–547. doi:10.1111/j.1526-100X.2006.00165.x.

    Article  Google Scholar 

  • Ellsworth, J., Harrington, R., & Fownes, J. (2004). Seedling emergence, growth, and allocation of oriental bittersweet: Effects of seed input, seed bank, and forest floor litter. Forest Ecology and Management, 190, 255–264. doi:10.1016/j.foreco.2003.10.015.

    Article  Google Scholar 

  • Emmer, I. M., Fanta, J., Kobus, A. T., Kooijman, A., Sevink, J., Fanta, J., et al. (1998). Reversing borealization as a means to restore biodiversity in Central-European mountain forests—An example from the Krkonoše mountains, Czech Republic. Biodiversity and Conservation, 7, 229–247. doi:10.1023/A:1008840603549.

    Article  Google Scholar 

  • Facelli, J. M., & Pickett, S. T. A. (1991). Plant litter: Its dynamics and effects on plant community structure. Botanical Review, 57, 1–32. doi:10.1007/BF02858763.

    Article  Google Scholar 

  • Harrington, C. A. (1999). Forests planted for ecosystem restoration or conservation. New Forests, 17, 175–190. doi:10.1023/A:1006539910527.

    Article  Google Scholar 

  • Hill, M. O. (1992). Mixtures as habitats for plants. In M. G. R. Cannell, D. C. Malcolm, P. A. Robertson (Eds.), The ecology of mixed-species stands of trees (pp. 301–302). Oxford: Blackwell Scientific.

    Google Scholar 

  • Hobbs, R. J. (2007). Setting effective and realistic restoration goals: Key directions for research. Restoration Ecology, 15, 354–357. doi:10.1111/j.1526-100X.2007.00225.x.

    Article  Google Scholar 

  • Jackson, M. L. (1968). Análisis Químico de Suelos (1st ed., pp. 125–127). Barcelona: Editorial Omega.

    Google Scholar 

  • Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry, 72, 59–73. doi:10.1093/forestry/72.1.59.

    Article  Google Scholar 

  • Jia, G. M., Cao, J., Wang, C. Y., & Wang, G. (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217, 117–125. doi:10.1016/j.foreco.2005.05.055.

    Article  Google Scholar 

  • Jones, E. R., Wishnie, M. H., & Deago, J. (2004). Facilitating natural regeneration in Saccharum spontaneum (L.) grasslands within the Panama Canal Watershed: Effects of tree species and tree structure on vegetation recruitment patterns. Forest Ecology and Management, 191, 171–183. doi:10.1016/j.foreco.2003.12.002.

    Article  Google Scholar 

  • Joret, G., & Hébert, J. (1955). Contribution à la détermination du besoin des sols en acide phosphorique. Ann Agron, 2, 233–299.

    Google Scholar 

  • Kirby, K. J. (1988). Changes in the ground flora under plantations on ancient woodland sites. Forestry, 61, 317–338. doi:10.1093/forestry/61.4.317.

    Article  Google Scholar 

  • Lebreton, P., & Choisy, J. P. (1991). Avifaune et altérations forestières. III. Incidences avifaunistiques des aménagements forestiers: substitution Quercus/Pinus en milieu subméditerranéen. Bulletin d’écologie, 1, 213–220.

    Google Scholar 

  • Maret, M. P., & Wilson, M. V. (2005). Fire and litter effects on seedling establishment in western Oregon upland prairies. Restoration Ecology, 13, 562–568. doi:10.1111/j.1526-100X.2005.00071.x.

    Article  Google Scholar 

  • McKee, K. L., & Faulkner, P. L. (2000). Restoration of biogeochemical function in mangrove forests. Restoration Ecology, 8, 247–259. doi:10.1046/j.1526-100x.2000.80036.x.

    Article  Google Scholar 

  • Meyer, C. L., Sisk, T. D., & Covington, W. W. (2001). Microclimatic changes induced by ecological restoration of ponderosa pine forests in northern Arizona. Restoration Ecology, 9, 443–452. doi:10.1046/j.1526-100X.2001.94013.x.

    Article  Google Scholar 

  • Murphy, J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. doi:10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • Ningxia Forestry Bureau National Reserve office, Ningxia Liupanshan National Natural Reserve management service (1989). Liupanshan ziranbaohuqu kexuekaocha (pp. 102–104). Yingchuan: Ningxia People Press (in Chinese).

    Google Scholar 

  • Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems (New York, N.Y.), 1, 6–18. doi:10.1007/s100219900002.

    Google Scholar 

  • Polyakova, O., & Aide, N. (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11–18. doi:10.1016/j.foreco.2007.06.049.

    Article  Google Scholar 

  • Reay, S. D., & Norton, D. A. (1999). Assessing the success of restoration plantings in a temperate New Zealand forest. Restoration Ecology, 7, 298–308. doi:10.1046/j.1526-100X.1999.72023.x.

    Article  Google Scholar 

  • Ruiz-Jaén, M. C., & Aide, T. M. (2005). Restoration success: How is it being measured? Restoration Ecology, 13, 569–577. doi:10.1111/j.1526-100X.2005.00072.x.

    Google Scholar 

  • Rutigliano, F. A., Ascoli, R. D., De Santo, A. V. (2004). Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry, 36, 1719–1729. doi:10.1016/j.soilbio.2004.04.029.

    Article  CAS  Google Scholar 

  • Saetre, P., Saetre, L. S., Brandtberg, P. O., Lundkvist, H., & Bengtsson, J. (1997). Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce–birch stands. Canadian Journal of Forest Research, 27, 2034–2042. doi:10.1139/cjfr-27-12-2034.

    Article  Google Scholar 

  • Salinas, M. J., & Guirado, J. (2002). Riparian plant restoration in summer dry riverbeds of southeastern Spain. Restoration Ecology, 10, 695–702. doi:10.1046/j.1526-100X.2002.01050.x.

    Article  Google Scholar 

  • Shannon, C. E. (1948). Mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Google Scholar 

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004). Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region. India Ecol Eng, 22, 123–140. doi:10.1016/j.ecoleng.2004.04.001.

    Article  Google Scholar 

  • Society for Ecological Restoration International Science & Policy Working Group (SER) (2004). The SER international Primer on Ecological Restoration. Society for Ecological Restoration International, Tucson, Arizona. Retrieved 10 September 2007 from http://www.ser.org.

  • Sorenson, T. (1948). A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish Commons. Boil Skr, 5, 1–34.

    Google Scholar 

  • Tsubuki, T., & Takizawa, T. (1996). Flight activities of Colias erate (Lepidoptera, Pieridae) in high and low altitudes. Transcontinental Lepidopteran Society of Japan, 47, 17–28.

    Google Scholar 

  • Vallauri, D. R., Aronson, J., & Barbero, M. (2002). An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restoration Ecology, 10, 16–26. doi:10.1046/j.1526-100X.2002.10102.x.

    Article  Google Scholar 

  • Wilkins, S., Keith, D. A., & Adam, P. (2003). Measuring success: Evaluating the restoration of a grassy eucalypt woodland on the cumberland plain, Sydney, Australia. Restoration Ecology, 11, 489–503. doi:10.1046/j.1526-100X.2003.rec0244.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Jin, H. & Wang, G. An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China. Environ Monit Assess 164, 357–368 (2010). https://doi.org/10.1007/s10661-009-0898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0898-5

Keywords

Navigation