Skip to main content
Log in

Utility of nematode Acrobeloides nanus for assessing subacute toxicity of heavy metals

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nematodes offer perspectives for ecotoxicological research as their characters and most of toxicity assessment focused on Caenorhabditis elegans. In order to enrich the limited numbers of nematode species used for toxicity test, this study assessed the subacute effects of copper and zinc to the life history characters of nematode Acrobeloides nanus. Compared with control, the 72-h effective concentration (EC)50, EC20, and EC10 for reproduction in A. nanus were 1.35, 0.49, and 0.20 mg/L, respectively, for Cu and 829.46, 330.29, and 163.90 mg/L, respectively, for Zn. The EC10 for growth at 72 h and 96 h of the 2nd generation in A. nanus were 1.13 and 0.97 mg/L, respectively, for Cu, and 353.46 and 284.20 mg/L, respectively, for Zn. During the exposure, the effect of copper–zinc on reproduction was less than additive, and the copper–zinc effect on growth changed from a synergistic to antagonistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. L., Boyd, W. A., & Williams, P. L. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 20, 833–838. doi:10.1897/1551-5028(2001)020<0833:AOSEFT>2.0.CO;2.

    CAS  Google Scholar 

  • Bongers, T. (1990). The maturity index—an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19. doi:10.1007/BF00324627.

    Article  Google Scholar 

  • Bongers, T., Ilieva-Makulec, K., & Ekschmitt, K. (2001). Acute sensitivity of nematode taxa to CuSO4 and relationships with feeding type and life-history classification. Environmental Toxicology and Chemistry, 20, 1511–1516. doi:10.1897/1551-5028(2001)020<1511:ASONTT>2.0.CO;2.

    CAS  Google Scholar 

  • Boyd, W. A., & Williams, P. L. (2003). Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environmental Toxicology and Chemistry, 22, 2768–2774. doi:10.1897/02-573.

    Article  CAS  Google Scholar 

  • Doroszuk, A. (2007). Populations under stress: Analysis on the interface between ecology and evolutionary genetics in nematodes. Ph.D. thesis, Wageningen University, Wageningen.

  • Ekschmitt, K., & Korthals, G. W. (2006). Nematodes as sentinels of heavy metals and organic toxicants in the soil. Journal of Nematology, 38, 13–19.

    CAS  Google Scholar 

  • Harada, H., Kurauchi, M., Hayashi, R., & Eki, T. (2007). Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicology and Environmental Safety, 66, 378–383. doi:10.1016/j.ecoenv.2006.02.017.

    Article  CAS  Google Scholar 

  • Hensbergen, P. J., & Van Gestel, C. A. M. (1995). Combinatie-toxiciteit in het terrestrische milieu. TCB rapport R04, Den Haag: TCB.

    Google Scholar 

  • Ikeda, M. (1994). Complex exposures: Potentials for assessing integrated exposures. Clinical Chemistry, 40, 1444–1447.

    CAS  Google Scholar 

  • Ingham, R. E., Trofymow, J. A., Ingham, E. R., & Coleman, D. C. (1985). Interactions of bacteria, fungi and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119–140. doi:10.2307/1942528.

    Article  Google Scholar 

  • Kammenga, J. E., Busschers, M., van Straalen, N. M., Jepson, P. C., & Bakker, J. (1996a). Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Functional Ecology, 10, 106–111. doi:10.2307/2390268.

    Article  Google Scholar 

  • Kammenga, J. E., van Koert, P. H. G., Riksen, J. A. G., Korthals, G. W., & Bakker, J. (1996b). A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acuminatus. Environmental Toxicology and Chemistry, 15, 722–727. doi:10.1897/1551-5028(1996)015<0722:ATTIAS>2.3.CO;2.

    CAS  Google Scholar 

  • Kooijman, S. A. L. M., & Bedaux, J. J. M. (1996). The analysis of aquatic toxicity data. Amsterdam: VU University Press.

    Google Scholar 

  • Korthals, G. W., van de Ende, A., van Megen, H., Lexmond, T. M., Kammenga, J. E., & Bongers, T. (1996). Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life history strategy groups. Applied Soil Ecology, 4, 107–117. doi:10.1016/0929-1393(96)00113-8.

    Article  Google Scholar 

  • Korthals, G. W., Bongers, M., Fokkema, A., Dueck, T. A., & Lexmond, T. M. (2000). Joint toxicity of copper and zinc to a terrestrial nematode community in an acid soil. Ecotoxicology (London, England), 9, 219–228. doi:10.1023/A:1008950905983.

    CAS  Google Scholar 

  • Li, F. F., Neher, D. A., Darby, B. J., & Weicht, T. R. (2005). Observed differences in life history characteristics of nematodes Aphelenchus and Acrobeloides upon exposure to copper and benzopyrene. Ecotoxicology (London, England), 14, 419–429. doi:10.1007/s10646-004-1347-4.

    CAS  Google Scholar 

  • Li, Q., Jiang, Y., & Liang, W. J. (2006). Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. Journal of Environmental Sciences (China), 18, 323–328.

    CAS  Google Scholar 

  • Liang, W. J., Li, Q., Zhang, X. K., Jiang, S. W., & Jiang, Y. (2006). Effect of heavy metals on soil nematode community structure in Shengyang suburbs. American-Eurasian Journal of Agricultural & Environmental Sciences, 1, 14–18.

    Google Scholar 

  • Marking, L. L., & Dawson, V. K. (1975). Methods for assessment of toxicity or efficacy of mixtures of chemicals. U.S. Fish and Wildlife Service investment control, 67, 1–8.

    Google Scholar 

  • Nagy, P., Bakonyi, G., Bongers, T., Kádár, I., Fábián, M., & Kiss, I. (2004). Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field. The Science of the Total Environment, 320, 131–143. doi:10.1016/j.scitotenv.2003.08.006.

    Article  CAS  Google Scholar 

  • Sochova, I., Hofman, J., & Holoubek, I. (2006). Using nematodes in soil ecotoxicology. Environment International, 32, 374–383. doi:10.1016/j.envint.2005.08.031.

    Article  CAS  Google Scholar 

  • Van Gundy, S. D. (1965). Factors in survival of nematodes. Annual Review of Phytopathology, 3, 43–68. doi:10.1146/annurev.py.03.090165.000355.

    Article  Google Scholar 

  • Wood, W. B. (1988). Introduction to C. elegans biology. In W. B. Wood (Ed.), The nematode Caenorhabditis elegans (pp. 1–16). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Yeates, G. W. (2003). Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, W., Li, Q., Zhang, J. et al. Utility of nematode Acrobeloides nanus for assessing subacute toxicity of heavy metals. Environ Monit Assess 164, 273–278 (2010). https://doi.org/10.1007/s10661-009-0891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0891-z

Keywords

Navigation