Skip to main content
Log in

Observational and modeling study of dry deposition on surrogate surfaces in a South China city: implication of removal of atmospheric crustal particles

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dry deposition samples collected during 1999–2001 at a South China site using surrogate surfaces were analyzed by capillary electrophoresis. Collector surface properties played important roles to the dry deposition. The deposition velocities for various species ranged from 0.02 to 1.69 cm s − 1, in general agreement with literature values. More than 90% of Ca2 +  was deposited by sedimentation and its comparable values of dry or wet removal residence times imply that dry deposition is an important atmospheric removal process for the ubiquitous crustal species in South China, compared with precipitation scavenging. Relatively good agreement was found when the species deposition velocities were modeled based on up-to-date knowledge of particle dry deposition. The total depositions for anthropogenic and crustal species in northern China are likely to be much higher than those in the south, including our site where the fluxes of the acidic species SO4 2 −  and NO3  −  were 4.4 and 2.2 g m − 2 year − 1, respectively. The sum of dry deposition for cations Na + , Ca2 + , Mg2 + , and K +  contributes 44% of the total flux, which is equivalent to the value estimated in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., Talbot, R. W., & Berresheim, H. (1990). Precipitation chemistry in central Amazonia. Journal of Geophysical Research, 95, 16987–16999. doi:10.1029/JD095iD10p16987.

    Article  CAS  Google Scholar 

  • Balestrini, R., Galli, L., & Tartari, G. (2000). Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atmospheric Environment, 34, 1455–1470. doi:10.1016/S1352-2310(99)00404-5.

    Article  CAS  Google Scholar 

  • Carstensen, J., Frohn, L. M., Hasager, C. B., & Gustafsson, B. G. (2005). Summer algal blooms in a coastal ecosystem: The role of atmospheric deposition versus entrainment fluxes. Estuary Coastal Shelf Science, 62, 595–608.

    Article  CAS  Google Scholar 

  • Dasch, J. M. (1985). Direct measurement of dry deposition to a polyethylene bucket and various surrogate surfaces. Environmental Science & Technology, 19, 721–725. doi:10.1021/es00138a011.

    Article  CAS  Google Scholar 

  • Davidson, C. I., & Wu, Y. L. (1990). Dry deposition of particles and vapors. In S. E. Lindberg, A. L. Page, & S. A. Norton (Eds.), Acidic precipitation. Sources, deposition and canopy interactions (Vol. 3, pp. 103–216). New York: Springer.

    Google Scholar 

  • Draaijers, G. P. J., VanLeeuwen, E. P., & DeJong, P. G. H. (1997). Base cation deposition in Europe. 1. Model description, results and uncertainties. Atmospheric Environment, 31, 4139–4157. doi:10.1016/S1352-2310(97)00254-9.

    Article  CAS  Google Scholar 

  • EPD (1986). Air quality in Hong Kong 1986. Hong Kong: Government Printer.

    Google Scholar 

  • Fujita, S., Takahashi, A., Weng, J. H., Huang, L. F., Kim, H. K., Li, C. K., et al. (2000). Precipitation chemistry in East Asia. Atmospheric Environment, 34, 525–537. doi:10.1016/S1352-2310(99)00261-7.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Zhao, D. W., Xiong, J. L., & Likens, G. E. (1987). Acid-rain—China, United-States, and a remote area. Science, 236, 1559–1562. doi:10.1126/science.236.4808.1559.

    Article  CAS  Google Scholar 

  • GESAMP (1989). The atmospheric input of trace species to the world ocean. Reports and studies no. 38, WMO.

  • Gupta, A., Kumar, R., Maharaj Kumari, K., & Srivastava, S. S. (2004). Atmospheric dry deposition to leaf surfaces at a rural site of India. Chemosphere, 55, 1097–1107.

    Article  CAS  Google Scholar 

  • Hicks, B. B., Baldocchi, D. D., & Meyers, T. P. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 36, 311–330. doi:10.1007/BF00229675.

    Article  CAS  Google Scholar 

  • Holsen, T. M., & Noll, K. E. (1992). Dry deposition of atmospheric particles—Application of current models to ambient data. Environmental Science & Technology, 26, 1807–1815. doi:10.1021/es00033a015.

    Article  CAS  Google Scholar 

  • IGAC (2004). International Global Atmospheric Chemistry projects (p. 13). http://www.igac.noaa.gov/newsletter/igac31/Jun_2005_IGAC_31.pdf. Accessed 12 March 2008.

  • Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton: Princeton University Press.

    Google Scholar 

  • Kumar, R., Rani, A., Kumari, K. M., & Srivastava, S. S. (2003). Direct measurement of atmospheric dry deposition to natural surfaces in a semiarid region of north central India. Journal of Geophysical Research, 108, 4625.

    Article  CAS  Google Scholar 

  • Larssen, T., Lydersen, E., Tang, D. G., He, Y., Gao, J. X., Liu, H. Y., et al. (2006). Acid rain in China. Environmental Science & Technology, 40, 418–425. doi:10.1021/es0626133.

    Article  CAS  Google Scholar 

  • Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., & Huebert, B. (1983). Tropospheric NOx and O3 budgets in the equatorial pacific. Journal of Geophysical Research, 88, 1360–1368.

    Article  CAS  Google Scholar 

  • Logan, J. A. (1983). Nitrogen-oxides in the troposphere—Global and regional budgets. Journal of Geophysical Research, 88, 785–807. doi:10.1029/JC088iC15p10785.

    Article  Google Scholar 

  • Noll, K. E., & Fang, K. Y. P. (1989). Development of a dry deposition model for atmospheric coarse particles. Atmospheric Environment, 23, 585–594.

    Article  CAS  Google Scholar 

  • PradoFiedler, R., & Fuenzalida, V. M. (1996). Wet and dry deposition of nitrogen compounds in the southeast Pacific coast: Montemar, central Chile. Journal of Geophysical Research, 101, 22845–22853. doi:10.1029/96JD01815.

    Article  CAS  Google Scholar 

  • Rao, P. S. P., Khemani, L. T., Momin, G. A., Safai, P. D., & Pillai, A. G. (1992). Measurements of wet and dry deposition at an urban location in India. Atmospheric Environment, 26B, 73–78.

    CAS  Google Scholar 

  • Ruijgrok, W., Davidson, C. I., & Nicholson, K. W. (1995). Dry deposition of particles—Implications and recommendations for mapping of deposition over Europe. Tellus, 47B, 587–601.

    CAS  Google Scholar 

  • Sakata, M., & Marumoto, K. (2004). Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler. Environmental Science & Technology, 38, 2190–2197.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Slinn, W. G. N. (1982). Predictions for particle deposition to vegetative canopies. Atmospheric Environment, 16, 1785–1794. doi:10.1016/0004-6981(82)90271-2.

    Article  Google Scholar 

  • Slinn, W. G. N. (1983). Air-to-sea transfer of particles. In P. S. Liss, & W. G. N. Slinn (Eds.), Air–sea exchange of gases and particles (pp. 299–405). Dordrecht: Reidel.

    Google Scholar 

  • Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., et al. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 108, 8809. doi:10.1029/2002JD003093.

    Article  CAS  Google Scholar 

  • Tanner, P. A., Law, P. T., & Tam, W. F. (2001). Comparison of aerosol and dry deposition sampled at two sites in Southern China. Journal of Aerosol Science, 32, 461–472. doi:10.1016/S0021-8502(00)00091-4.

    Article  CAS  Google Scholar 

  • Wai, K. M., Tanner, P. A., & Tam, C. W. F. (2005). 2-Year study of chemical composition of bulk deposition in a South China coastal city: Comparison with east Asian cities. Environmental Science & Technology, 39, 6542–6547. doi:10.1021/es048897d.

    Article  CAS  Google Scholar 

  • Wang, Y., Wai, K. M., Gao, J., Liu, X. H., Wang, T., & Wang, W. X. (2008). The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China. Atmospheric Environment, 42, 2959–2970.

    Article  CAS  Google Scholar 

  • Warneck, P. (2000). Chemistry of the natural atmosphere (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Wesely, M. L., & Hicks, B. B. (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34, 2261–2282. doi:10.1016/S1352-2310(99)00467-7.

    Article  CAS  Google Scholar 

  • Yi, S. M., Holsen, T. M., & Noll, K. E. (1997). Comparison of dry deposition predicted from models and measured with a water surface sampler. Environmental Science & Technology, 31, 272–278.

    Article  CAS  Google Scholar 

  • Zhang, L. M., Gong, S. L., Padro, J., & Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35, 549–560. doi:10.1016/S1352-2310(00)00326-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wai, KM., Leung, KY. & Tanner, P.A. Observational and modeling study of dry deposition on surrogate surfaces in a South China city: implication of removal of atmospheric crustal particles. Environ Monit Assess 164, 143–152 (2010). https://doi.org/10.1007/s10661-009-0881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0881-1

Keywords

Navigation