Skip to main content
Log in

Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we determined the heavy metal content (Cd2+, Cr3+, Cu2+, Fe3+, Ni2+, Pb2+, and Zn2+) in the soil surrounding the roots and different organs of Verbascum bombyciferum Boiss. (Scrophulariaceae), which is endemic to Uludağ Mountain, Bursa, Turkey. Plant samples were collected from roadsides, and heavy metal accumulation capabilities were tested. This is one of the pioneer species of ruderal plant communities on roadsides, building sites, rubbish dumps, etc. Different organs of plant samples (roots, stems, leaves, and flowers) and their soils were analyzed by inductively couple plasma optical emission spectroscopy for their heavy metal contents. Some of the analyzed heavy metals (Cd2+, Cr3+, Pb2+, and Zn2+) were usually increased depending on the traffic in the sample sites, and this variation was also reflected in heavy metal content of plant samples. Our results show that this plant can be used as a bio-indicator species in the monitoring of increased Cd2+, Cr3+, Pb2+, and Zn2+ in the environment. We also concluded that V. bombyciferum have the capability of Cd2+, Cr3+, Cu2+, Ni2+, Pb2+, and Zn2+ accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aksoy, A., & Öztürk, M. A. (1997). Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. The Science of the Total Environment, 205, 145–150. doi:10.1016/S0048-9697(97)00195-2.

    Article  CAS  Google Scholar 

  • Aksoy, A., Hale, W. H. G., & Dixon, J. M. (1999). Capsella bursa-pastoris (L.) Medic. As a biomonitor of heavy metals. The Science of the Total Environment, 226, 177–186. doi:10.1016/S0048-9697(98)00391-X.

    Article  CAS  Google Scholar 

  • Allen, S. E. (1989). Analysis of ecological materials (2nd ed.). Oxford: Blackwell Scientific.

    Google Scholar 

  • Brooks, R. R., Chiarucci, A., & Jaffre, T. (1998). Revegetation and stabilisation of mine dumps and degraded terrain. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals. Their role in phytoremeditation, microbiology, archeology, mineral exploration and phytomining (pp. 227). Wallingford, USA: CAB International.

    Google Scholar 

  • Brown, G. (1995). The effects of lead and zinc on the distribution of plants species at former mining areas of Western-Europe. Flora, 190, 243–249.

    Google Scholar 

  • Chandra Sekhar, K., Kamala, C. T., Chary, N. S., & Anjaneyulu, Y. (2003). Removal of heavy metals using a plant biomass with reference to environmental control. International Journal of Mineral Processing, 68, 37–45. doi:10.1016/S0301-7516(02)00047-9.

    Article  Google Scholar 

  • Davis, P. H. (1978). Flora of Turkey and the East Aegean Islands, vol. 6. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Ellenberg, H. (1988). Vegetation ecology of Central Europe (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ernst, W. H. O. (1990). Mine vegetation in Europe. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 22–36). Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere, 54, 1625–1642. doi:10.1016/j.chemosphere.2003.09.045.

    Article  CAS  Google Scholar 

  • González, R. C., & González-Chávez, M. C. A. (2006). Metal accumulation in wild plants surrounding mining wastes. Environmental Pollution, 144, 84–92. doi:10.1016/j.envpol.2006.01.006.

    Article  Google Scholar 

  • Güleryüz, G., & Arslan, H. (1999). Nitrate reductase activity in Verbascum L. (Scrophulariaceae) species from the east Mediterranean in dependence on altitude. Turkish Journal of Botany, 23, 89–96.

    Google Scholar 

  • Güleryüz, G., & Arslan, H. (2001). A study on biomass production of three endemic Verbascum L. species (Scrophulariaceae) from East Mediterranean. Perspectives in Environmental Studies, 3, 1–6.

    Google Scholar 

  • Güleryüz, G., Arslan, H., İzgi, B., & Güçer, Ş. (2006). Element content (Cu, Fe, Mn, Ni, Pb, and Zn) of the ruderal plant Verbascum olympicum Boiss. from East Mediterranean. Zeitschrift für Naturforschung, C, 61, 357–362.

    Google Scholar 

  • Güleryüz, G., & Malyer, H. (1998). Three Verbascum L. species endemic to Uludağ (Bursa): Verbascum bombyciferum Boiss., Verbascum prusianum Boiss., Verbascum olympicum Boiss. (Scrophulariaceae). The Karaca Arboretum Magazine, IV, 135–142.

    Google Scholar 

  • Kfayatullah, Q., Tahir Shah, M., & Arfan, M. (2001). Biogeochemical and environmental study of the chromite-rich ultramafic terrain of Malakand area, Pakistan. Environmental Geology, 40, 1482–1486. doi:10.1007/s002540100374.

    Article  CAS  Google Scholar 

  • Kim, I. S., Kang, K. H., Johnson-Green, P., & Lee, E. J. (2003). Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environmental Pollution, 126, 235–243. doi:10.1016/S0269-7491(03)00190-8.

    Article  CAS  Google Scholar 

  • Klump, A., Bauer, K., Franz-Gerstein, C., & De Menezes, M. (2002). Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cahoeira in Bahia (Brazil). Environment International, 28, 165–171. doi:10.1016/S0160-4120(02)00026-0.

    Article  Google Scholar 

  • Markert, B. (1994). Plants as biomonitors-potential advantages and problems. In D. C Adriano, Z. S. Chen, & S. S. Yang (Eds.), Biogeochemistry of trace elements (pp. 601–613). Northwood, NY, USA: Science and Technology Letters.

    Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  • Piczak, K., Lesniewicz, A., & Zyrnicki, A. (2003). Metal concentrations in deciduous tree leaves urban areas in Poland. Environmental Monitoring and Assessment, 86, 273–287. doi:10.1023/A:1024076504099.

    Article  CAS  Google Scholar 

  • Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range leaf/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety, 52, 273–279. doi:10.1006/eesa.2002.2201.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by tree—a review. Environment International, 29, 529–540. doi:10.1016/S0160-4120(02)00152-6.

    Article  CAS  Google Scholar 

  • Rasmussen, L. (1977). Epiphytic bryophytes as indicators of the changes in the background levels of airborne metals from 1951–75. Environmental Pollution, 14, 37–45. doi:10.1016/0013-9327(77)90086-6.

    Article  CAS  Google Scholar 

  • Rehder, H., Gökçeoğlu, M., Gebauer, G., & Güleryüz, G. (1994). Die Vegetation des Uludağ-Gebirges (Anatolien). Phytocoenologia, 24, 169–194.

    Google Scholar 

  • Robinson, B. H., Leblanc, M., Petit, D., Brooks, R. R., Kirkman, J. H., & Gregg, P. E. H. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203, 47–56. doi:10.1023/A:1004328816645.

    Article  CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. The Science of the Total Environment, 28, 87–98. doi:10.1016/S0048-9697(01)00838-5.

    Article  Google Scholar 

  • Sardans, J., & Penuelas, J. (2005). Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere, 60, 1293–1307. doi:10.1016/j.chemosphere.2005.01.059.

    Article  CAS  Google Scholar 

  • Schwitzguebel, J.-P. (2001). Hype or hope: The potential of phytoremediation as an emerging green technology. Remediation, 11, 63–78. doi:10.1002/rem.1015.

    Article  Google Scholar 

  • Seaward, M. R. D. (1974). Some observations on heavy metal toxicity and tolerance in lichens. Lichenologist (London, England), 6, 158–164. doi:10.1017/S0024282974000260.

    Article  Google Scholar 

  • Seaward, M. R. D., Bylinska, E. A., & Goyal, R. (1981). Heavy metal content of Umbilicaria species from the Sudety area of SW Poland. Oikos, 36, 107–113. doi:10.2307/3544386.

    Article  CAS  Google Scholar 

  • Shaw, B. P., Sahu, S. K., & Mishra, R. K. (2004). Heavy metal induced oxidative damage in terrestrial plants. In M. N. V. Prasad (Ed.), Heavy metal stress in plants: From molecules to ecosystems (pp. 84–126). Berlin, Germany: Springer.

    Google Scholar 

  • Sutherland, R. A., & Tack, F. M. (2000). Metal phase association in soils from an urban watershed, Honolulu, Hawaii. The Science of the Total Environment, 256, 103–113. doi:10.1016/S0048-9697(00)00458-7.

    Article  CAS  Google Scholar 

  • Swaileh, K. M., Hussein, R. M., & Abu-Elhaj, S. (2004). Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank. Archives of Environmental Contamination and Toxicology, 47, 23–30. doi:10.1007/s00244-003-3045-2.

    Article  CAS  Google Scholar 

  • Temmerman, L. O., Hoening, M., & Scokart, P. O. (1984). Determination of normal levels and upper limit values of trace elements in soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 147, 687–699. doi:10.1002/jpln.19841470606.

    Article  Google Scholar 

  • Yılmaz, D. D. (2007). Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). Journal of Hazardous Materials, 147, 74–77. doi:10.1016/j.jhazmat.2006.12.047.

    Article  Google Scholar 

  • Yule, F. A., & Lloyd, O. L. (1984). Metal content of indigenous moss in Armadale, Central Scotland. Water, Air, and Soil Pollution, 21, 261–270. doi:10.1007/BF00163629.

    Article  CAS  Google Scholar 

  • Zeidler, M. (2005). Heavy metals in two herb species (river Morava, Czech Republic). Polish Journal of Ecology, 53, 185–195.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, H., Güleryüz, G., Leblebici, Z. et al. Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey. Environ Monit Assess 163, 105–113 (2010). https://doi.org/10.1007/s10661-009-0820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0820-1

Keywords

Navigation