Skip to main content
Log in

Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz Bay, México

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Results of bulk-phase chemical measurements, toxicological tests combined with bioaccumulation measures in fishes, were used to evaluate the toxicity of the 16 USEPA priority polycyclic aromatic hydrocarbons from the sediment collected from eight stations of the Ventosa Estuarine System, located close to the main center of processing oil in the Mexican Pacific coast. Levels of the sum of polycyclic aromatic hydrocarbons varied from 22 to 6,850 μg kg − 1 dry weight. Based on sediment quality guidelines, the compounds with high environmental priority were acenaphtylene, acenaphtene, and phenanthrene. Acute toxicity tests with Vibrio fischeri and Daphnia magna as well as chronic toxicity with Panagrellus redivivus were performed. The quantification of hepatic ethoxyresorufin O-deethylase activity was used to assess the induction of the mixed function oxygenase system of brown trout. However, because it is often difficult to blend the results from such very different assays into a unified decision about the potential for impacts, a weight-of-evidence (WOE) approach to sediment quality investigations was followed. These assays provided measurement endpoints that could be used to develop an overall evaluation of the potential for environmental impacts from the oil processing operations. WOE provides a valuable tool for assessing the results of environmental investigations because it provides a framework for considering the strengths and weaknesses of environmental measurements, an approach for addressing uncertainty in the measurements, and documentation of the evaluation and its assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S. M. (2002). Biological indicators of aquatic ecosystem stress: Introduction and overview. In S. M. Adams (Ed.), Biological indicators of aquatic ecosystem stress (pp. 1–11). Bethesda, MD: American Fisheries Society.

    Google Scholar 

  • Adams, S. M. (2003). Establishing causality between environmental stressors and effects on aquatic ecosystems. Human and Ecological Risk Assessment, 9, 17–35. doi:10.1080/713609850.

    Article  CAS  Google Scholar 

  • Anderson, B. S., Hunt, J. W., Phillips, B. M., Fairey, R., Roberts, C. A., Oakden, J. M., et al. (2001). Sediment quality in Los Angeles Harbor, USA: A triad assessment. Environmental Toxicology and Chemistry, 20, 359–370. doi:10.1897/1551-5028(2001)020<0359:SQILAH>2.0.CO;2.

    Article  CAS  Google Scholar 

  • APHA. American Public Health Association (1995). In A. D. Eaton, L. D. Clesceri, & A. E. Greenberg (Eds.), Standard methods for the examination of water and wastewater, Part 8050 bacterial bioluminescence (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • ASTM. American Society for Testing Materials (2005). Designation: E 1706-05. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. ASTM International, West Conshohocken, PA 19428–2959, USA.

  • Atgın, R. S., El-Agha, O., Zararsız, A., Kocatas, A., Parlak, H., & Tuncel, G. (2000). Investigation of the sediment pollution in Izmir Bay: Trace elements. Spectrochimica Acta. Part B, Atomic Spectroscopy, 55, 1151–1164. doi:10.1016/S0584-8547(00)00231-7.

    Article  Google Scholar 

  • Attrill, M. J., & Depledge, M. H. (1997). Community and population indicators of ecosystem health: Targeting links between levels of biological organization. Aquatic Toxicology (Amsterdam, Netherlands), 38, 183–197. doi:10.1016/S0166-445X(96)00839-9.

    CAS  Google Scholar 

  • Barbour, M. T., Swietlik, W. F., Jackson, S. K., Courtemanch, D. L., Davies, S. P., & Yoder, C. O. (2000). Measuring the attainment of biological integrity in the USA: A critical element of ecological integrity. Hydrobiologia, 422–423(0), 453–464. doi:10.1023/A:1017095003609.

    Article  Google Scholar 

  • Barron, M. G., Hintz, R., & Rice, S. D. (2004). Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Marine Environmental Research, 58, 95–100. doi:10.1016/j.marenvres.2004.03.001.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Garrigues, P., Dizer, H., & Hansen, P. D. (1999). Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, bioavailability and seasonal variations. Marine Environmental Research, 47, 17–47. doi:10.1016/S0141-1136(98)00105-6.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Burke, M. D., & Mayer, R. T. (1974). Ethoxyresoruin: Direct flourimetric assay of a microsomal O-dealkylation which preferentially inducible by 3-methychlolanthrine. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 2, 583–588.

    CAS  Google Scholar 

  • Burns, W. A., Mankiewicz, P. J., Bence, A. E., Page, D. S., & Parker, K. R. (1997). A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environmental Toxicology and Chemistry, 16, 1119–1131. doi:10.1897/1551-5028(1997)016<1119:APCALS>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Burton, G. A., Chapman, P. M., & Smith, E. P. (2002). Weight-of-evidence approaches for assessing ecosystem impairment. Human and Ecological Risk Assessment, 8, 1657–1673. doi:10.1080/20028091057547.

    Article  Google Scholar 

  • Clarke, J. U. (1998). Evaluation of censored data. Methods to allow statistical comparisons among very small samples with below detection limit observations. Environmental Science & Technology, 32, 177–183. doi:10.1021/es970521v.

    Article  CAS  Google Scholar 

  • Colombo, J. C., Cappelletti, N., Lasci, J., Migoya, C., Speranza, E., & Skorupka, C. N. (2006). Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Río de la Plata estuary, Argentina. Environmental Science & Technology, 40, 734–740. doi:10.1021/es051672y.

    Article  CAS  Google Scholar 

  • Cook, R. B., Suter, G. W., & Sain, E. R. (1999). Ecological risk assessment in a large river-reservoir: 1. Introduction and background. Environmental Toxicology and Chemistry, 18, 581–588. doi:10.1897/1551-5028(1999)018<0581:ERAIAL>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Culp, J. M., Lowell, R. B., & Cash, K. J. (2000). Integrating mesocosm experiments with field and laboratory studies to generate weight of-evidence risk assessments for large rivers. Environmental Toxicology and Chemistry, 19, 1167–1173. doi:10.1897/1551-5028(2000)019<1167:IMEWFA>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Dethloff, G. M., & Schmitt, C. J. (2000). Condition Factor and organo-somatic indices. In C. Schmitt, & G. Dethloff (Eds.), Biomonitoring of environmental status and trends (BEST) program: Selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. USGS. Technology report (pp. 13–18). USGS/BRD/ITR-2000-0005. USA.

  • Eljarrat, E., Caixach, J., Rivera, J., Torres, M., & Ginebreda, A. (2001). Toxic potency assessment of non- and mono-ortho PCBs, PCDDs, PCDFs, and PAHs in Northwest Mediterranean sediments (Catalonia, Spain). Environmental Science & Technology, 35, 3589–3594. doi:10.1021/es010041a.

    Article  CAS  Google Scholar 

  • Folk, R. L. (1974). The petrology of sedimentary rocks. Austin, Texas: Hemphill.

    Google Scholar 

  • Galloway, T. S., Brown, R. J., Browne, M. A., Dissanayake, A., Lowe, D., Jones, M. B., et al. (2004). A multibiomarkers approach to environmental assessment. Environmental Science & Technology, 38, 1723–1731. doi:10.1021/es030570+.

    Article  CAS  Google Scholar 

  • González-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, México. Environmental Monitoring and Assessment, 118, 211–230. doi:10.1007/s10661-006-1492-8.

    Article  CAS  Google Scholar 

  • González-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2007). Environmental assessment of aromatic hydrocarbons-contaminated sediments of the Mexican Salina Cruz Bay. Environmental Monitoring and Assessment, 133, 187–207. doi:10.1007/s10661-006-9572-3.

    Article  CAS  Google Scholar 

  • González-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2008). Assessment of benthic changes during 20 years of monitoring of the Mexican Salina Cruz Bay. Environmental Monitoring and Assessment, 149, 113–132.

    Article  CAS  Google Scholar 

  • Hodson, P. V. (2002). Biomarkers and bioindicators in monitoring and assessment: The state of the art. In S. M. Adams (Ed.), Biological indicators of aquatic ecosystem stress (pp. 591–619). Bethesda, MD: American Fisheries Society.

    Google Scholar 

  • Ibrahim, M. B. M. (2004). Levels and sources of polycyclic aromatic hydrocarbons in sediments from the Gulf of Suez. Marine Pollution Bulletin, 49, 356–367. doi:10.1016/j.marpolbul.2004.04.010.

    Article  CAS  Google Scholar 

  • Karageorgis, A. P., Sioulas, A. I., & Anagnostou, C. L. (2002). Use of surface sediments in Pagassitikos Gulf, Greece, to detect anthropogenic influence. Geo-Marine Letters, 21, 200–211. doi:10.1007/s00367-001-0086-2.

    Article  CAS  Google Scholar 

  • Kayal, S., & Connell, D. W. (1995). Polycyclic aromatic hydrocarbons in biota from the Brisbane River Estuary, Australia. Estuarine, Coastal and Shelf Science, 40, 475–493. doi:10.1006/ecss.1995.0033.

    Article  CAS  Google Scholar 

  • Landlot, M., Kalman, D., Nevissi, K., Ness, V., & Hafer, F. (1987). Potential toxicant exposure among consumers of recreationally caught fish from urban embayment of Puget Sound. Technical NOAA Memorandum, NOS OMA-33. Rockville, MD: National Oceanic and Atmospheric Administration.

    Google Scholar 

  • Macdonald, D., Carr, R. S., Calder, F., Long, E., & Ingersoll, C. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology (London, England), 5, 253–278. doi:10.1007/BF00118995.

    CAS  Google Scholar 

  • Maldonado, C., Bayona, J. M., & Bodineau, L. (1999). Sources, distribution and column processes of aliphatic and polycyclic aromatic hydrocarbons in the northwestern Black Sea water. Environmental Science & Technology, 33, 2693–2702. doi:10.1021/es9811647.

    Article  CAS  Google Scholar 

  • McGee, B. L., Fisher, D. J., Yonkos, L. T., Ziegler, G. P., & Turley, S. (1999). Assessment of sediment contamination, acute toxicity, and population viability of the estuarine amphipod Leptocheirus plumulosus in Baltimore Harbor, Maryland, USA. Environmental Toxicology and Chemistry, 18, 2151–2160. doi:10.1897/1551-5028(1999)018<2151:AOSCAT>2.3.CO;s2.

    Article  CAS  Google Scholar 

  • Menzie, C., Henning, M. H., & Cura, J. (1996). Special report of the Massachusetts weight-of evidence workgroup: A weight-of-evidence approach for evaluating ecological risks. Human and Ecological Risk Assessment, 2, 277–304.

    Google Scholar 

  • Microbics Corporation (1992). Microtoxt manual. A toxicity testing handbook. Carlsbad, CA, USA: Microbics.

    Google Scholar 

  • Nicholson, G. J., Theodoropoulos, T., & Fabris, G. J. (1994). Hydrocarbons, pesticides, PCB and PAH in Port Phillip Bay (Victoria) sand flathead. Marine Pollution Bulletin, 28, 115–120. doi:10.1016/0025-326X(94)90548-7.

    Article  CAS  Google Scholar 

  • OECD. Organization for Economic Co-operation and Development (1981). OECD guidelines for testing of chemicals. 202. Daphnia sp. acute immobilization and reproduction test. Paris, France: OECD.

    Google Scholar 

  • Olajire, A. A., Altenburger, R., Kqster, E., & Brack, W. (2005). Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon-contaminated sediments of the Niger Delta, Southern Nigeria. The Science of the Total Environment, 340, 123–136. doi:10.1016/j.scitotenv.2004.08.014.

    Article  CAS  Google Scholar 

  • Pinkney, A. E., Harshbarger, J. C., May, E. B., & Melancon, M. J. (2001). Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, Watershed. Environmental Toxicology and Chemistry, 20, 1196–1205. doi:10.1897/1551-5028(2001)020<1196:TPABOE>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Reinhold-Dudok van Heel, H. C., & den Besten, P. J. (1999). The relation between macroinvertebrate assemblages in the Thine-Meuse delta (The Netherlands) and sediment quality. Aquatic Ecosystem Health & Management, 2, 19–38. doi:10.1016/S1463-4988(99)00023-8.

    Article  Google Scholar 

  • Ringwood, A. H., DeLorenzo, M. E., Ross, P. E., & Holland, A. F. (1997). Interpretation of Microtox solid-phase toxicity tests. The effect of sediment composition. Environmental Toxicology and Chemistry, 16, 1135–1140. doi:10.1897/1551-5028(1997)016<1135:IOMSPT>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Samoiloff, M. R., Schultz, Z., Jordan, Y., Denich, K., & Arnott, E. (1990). A rapid simple long-term toxicity assay for aquatic contaminates using the nematode Panagrellus redivivus. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1167–1174.

    Article  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., Golden, K. A., Liu, S. P., Lipiatou, E., & Swackhamer, D. L. (1996). Atmospheric loading of polycyclic aromatic hydrocarbons to Lake Michigan as recorded in the sediments. Environmental Science & Technology, 30, 3039–3046. doi:10.1021/es960102i.

    Article  CAS  Google Scholar 

  • Simpson, M. J., Chefetz, B., Deshmukh, A. P., & Hatcher, P. G. (2005). Comparison of polycyclic aromatic hydrocarbon distributions and sedimentary organic matter characteristics in contaminated, coastal sediments from Pensacola Bay, Florida. Marine Environmental Research, 59, 139–163. doi:10.1016/j.marenvres.2003.09.003.

    Article  CAS  Google Scholar 

  • Suter, G. W. (1993). Ecological risk assessment. Lewis Publishers, Boca Raton, Fl, USA.

    Google Scholar 

  • Statistica (1998). Statistica for windows (Volume I). General conventions general conventions ands statistics I (2nd edn.). Tulsa OK, USA: Stat Soft.

    Google Scholar 

  • Swartz, R. C. (1999). Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures. Environmental Toxicology and Chemistry, 18, 780–787. doi:10.1897/1551-5028(1999)018<0780:CSQGFP>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics. New York, NY, USA: HarperCollins.

    Google Scholar 

  • Tolosa, I., Bayona, J. M., & Albaiges, J. (1996). Aliphatic and polycyclic aromatic hydrocarbons and sulphur/oxygen derivatives in Northwestern Mediterranean sediments: Spatial and temporal variability fluxes and budgets. Environmental Science & Technology, 30, 2495–2503. doi:10.1021/es950647x.

    Article  CAS  Google Scholar 

  • Tolosa, I., De Mora, S., Reza, M., Villeneuve, J., Bartocci, J., Cattini, Ch. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, 48, 44–60.

    Article  CAS  Google Scholar 

  • UNESCO (1982). Comisión Oceanográfica Intergubernamental Determinación de los hidrocarburos de petróleo en los sedimentos. Manuales y Guías, 11, 1–35.

    Google Scholar 

  • UNESCO (1984). Comisión Oceanográfica Intergubernamental Manual para la vigilancia del aceite y de los hidrocarburos del petróleo disueltos o dispersos en el agua del mar y en las playas. Manuales y Guías, 13, 1–37.

    Google Scholar 

  • USEPA/ACOE. United States Environmental Protection Agency/Army Corps of Engineers (1991). Evaluation of dredged material proposed for ocean disposal (testing manual). EPA-503/8-91/001, USEPA Office of Water (WH-556F) and US Army Corps of Engineers, Washington, DC.

  • USEPA. United States Environmental Protection Agency (1993). In C. I. Weber (Ed.), Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (4th edn). Cincinnati, OH: Environmental Monitoring Systems Laboratory, Office of Research and Development, EPA, EPA/600/4-90/027F.

  • USEPA. United States Environmental Protection Agency (1994). Ten-day chronic toxicity test using Daphnia magna or Daphnia pulex. 11.16.94, No 2028. Washington, DC: US Government Printing Office.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency (1996a). Method 3630C. Silica gel cleanup. Washington, DC: US Government Printing Office.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency (1996b). Method 3540C. Soxhlet extraction. Washington, DC: US Government Printing Office.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency (1998). Guidelines for ecological risk assessment. Washington, DC: Office of Research and Development, Risk assessment forum, EPA/630/R-95002F.

  • USEPA. United States Environmental Protection Agency (1999). Issuance of final guidance: Ecological risk assessment and risk management principles for superfund sites. Washington, DC: Office of Solid Waste and Emergency Response, October 7, 1999. OSWER Directive 9285.7-28P.

  • USEPA. United States Environmental Protection Agency (2000a). Method 3550c. Ultrasonic extraction. Washington, DC: US Government Printing Office.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency (2000b). Method 8310. Polynuclear aromatic hydrocarbons. HPLC. Washington, DC: US Government Printing Office.

    Google Scholar 

  • USEPA. United States Environmental Protection Agency (2000c). Stressor Identification Guidance Document, EPA/822/B-00/025. Office of Water, Washington, DC: US Government Printing Office.

    Google Scholar 

  • Whyte, J. J., Jung, R. E., Schmitt, C. J., & Tillit, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30, 347–570. doi:10.1080/10408440091159239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Schifter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Coria, L., Schifter, I. & González-Macías, C. Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz Bay, México. Environ Monit Assess 162, 387–406 (2010). https://doi.org/10.1007/s10661-009-0804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0804-1

Keywords

Navigation