Skip to main content
Log in

Identification and evaluation of hydrogeochemical processes on river Cooum, South India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The salient features of the river water chemistry and the seasonal variations on the individual chemical parameter were evaluated and characterized. The order of abundance of the ions in the water is determined for both seasons. The contribution of chemical weathering to the water chemistry has been determined using the (Ca2+ + Mg2+)/(Na+ + K+) ratio, ternary, and Gibb’s diagrams. The results show that the chemical composition of river water during premonsoon is controlled mainly by evaporation–crystallization, while in the postmonsoon, the rock–water interaction dominates. The unique characteristic of the river water is the linear relationship among the principal ions. Hydrochemical characteristics of ions in the water were studied using 1:1 equiline diagrams. The nature of the water samples was determined using the piper diagram. The influence of trace metals on the chemical composition and the quality of the river water in the study area has been assessed using Wilcox and US Salinity Laboratory diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1995). Standard methods for the examination of water and wastewater (19th ed., 1467 pp.). Washington, D.C.: American Public Association.

    Google Scholar 

  • AWWA (1971). Water quality and treatment. New York: McGraw-Hill.

    Google Scholar 

  • Biksham, G., & Subramanian, V. (1988). Nature of solute transport in the Godavari basin, India. Journal of Hydrology (Amsterdam), 103, 375–392. doi:10.1016/0022-1694(88)90145-X.

    Article  CAS  Google Scholar 

  • Brown, E., Skougslad, M. W., & Fishman, M. J. (1970). Methods for collection and analysis of water samples for dissolved minerals and gases. Techniques for water resources investigations, Book 5 (Chapter A1). Washington, D.C.: US Geological Survey.

    Google Scholar 

  • Carbonnel, J. P., & Meybeck, M. (1975). Quality variations of the Mekong river at Phnom Penh, Combodia and chemical transport in the Mekong basin. Journal of Hydrology (Amsterdam), 27, 249–265. doi:10.1016/0022-1694(75)90058-X.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Dey, A. K. (1981). The Damodar river water quality—upstream and down stream of Durgapur barrage. Journal of the Institution of Public Health Engineers India, 3, 57–60.

    Google Scholar 

  • Enguix González, A., Ternero Rodríguez, M., Jiménez Sánchez, J. C., Fernández Espinosa, A. J., Barragán De La Rosa, F. J. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain). Heavy metal partitioning and relation between the water and sediment system. Water, Air, and Soil Pollution, 121, 11–29. doi:10.1023/A:1005203012514.

    Article  Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlín: Springer.

    Google Scholar 

  • Gibbs, R. J. (1972). Water chemistry of Amazon river. Geochimica et Cosmochimica Acta, 36, 1061–1066. doi:10.1016/0016-7037(72)90021-X.

    Article  CAS  Google Scholar 

  • Gowri, V. S., Ramachandran, S., Ramesh, R., Pramiladevi, I. R. R., & Krishnaveni, K. (2008). Application of GIS in the study of mass transport of pollutants by Adyar and Cooum Rivers in Chennai, Tamil Nadu. Environmental Monitoring and Assessment, 138(1–3), 41–49. doi:10.1007/s10661-007-9789-9.

    Article  CAS  Google Scholar 

  • Hall, M. J. (1984). Urban hydrology (pp. 1–15, 227–244). Barking: Elsevier Applied Science.

    Google Scholar 

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water (3rd ed., p. 2254). Jodhpur: Scientific.

    Google Scholar 

  • Hu, M.-H., Stallard, R. F., & Edmond, J. M. (1982). Major ion chemistry of some large Chinese rivers. Nature, 298, 550–553. doi:10.1038/298550a0.

    Article  Google Scholar 

  • Karanth, K. R. (1989). Hydrogeology (pp. 720). New Delhi: McGraw-Hill.

    Google Scholar 

  • Nurnberg, H. W. (1982). Voltametric trace analysis in ecological chemistry of toxic metals. Pure and Applied Chemistry, 54(4), 853–878. doi:10.1351/pac198254040853.

    Article  Google Scholar 

  • Rainwater, F. H., & Thatcher, L. L. (1960). Methods for collection and analysis of water samples. U.S. Geological Survey Water-Supply Paper, 1454, 1–301.

    Google Scholar 

  • Rajnikant, S., & Pervez, S. (2003). Enrichment and exposure of particulate lead in a traffic environment in India. Environmental Geochemistry and Health, 25, 297–306. doi:10.1023/A:1024520522083.

    Article  Google Scholar 

  • Ramesh, R., Shivkumar, K., Eswaramoorthi, S., & Purvaja, G. R. (1995). Migration and contamination of major and trace elements in groundwater of Madras City, India. Environmental Geology, 25, 126–136. doi:10.1007/BF00767869.

    Article  CAS  Google Scholar 

  • Reeder, S. W., Hitchon, B., & Levinson, A. A. (1972). Hydrogeochemistry of the surface waters of the Mackenzie drainage basin, Canada—Factor controlling inorganic composition. Geochimica et Cosmochimica Acta, 36, 825–865. doi:10.1016/0016-7037(72)90053-1.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils. US Department of Agriculture. HandBook, 60, 160.

    Google Scholar 

  • Rowell, D. J. (1994). Soil science: Methods and applications. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • Sarin, M. M., & Krishnaswamy, S. (1984). Major ion chemistry of the Ganga-Brahmaputra river system, India. Nature, 312(5994), 538–541. doi:10.1038/312538a0.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Krishnaswamy, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53, 997–1009. doi:10.1016/0016-7037(89)90205-6.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (1999). Environmental geochemistry of Damodar river basin, East coast of India. Environmental Geology, 37, 124–136.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon river.The influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688. doi:10.1029/JC088iC14p09671.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon, weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302. doi:10.1029/JC092iC08p08293.

    Article  CAS  Google Scholar 

  • Subramanian, V. (1979). Chemical and suspended sediment characteristics of rivers of India. Journal of Hydrology (Amsterdam), 44, 37–55. doi:10.1016/0022-1694(79)90145-8.

    Article  CAS  Google Scholar 

  • Tiwari, R. K., & Dhar, B. B. (1994). Effect of coal mining and coal based industrial activities on water quality of the Damodar with specific refrence to heavy metals. International Journal of Surface Mining, Reclamation and Environment, 8, 11–115.

    Google Scholar 

  • USSL (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60 (p. 160). Madison: US Salinity Laboratory.

    Google Scholar 

  • Varrica, D., Dongarra, G., Sabatino, G., & Monna, F. (2003). Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environmental Geology, 44, 222–230.

    CAS  Google Scholar 

  • Walker, B. R., Jolly, L. D., & Cook, P. G. (1991). A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. Journal of Hydrology (Amsterdam), 128, 49–67. doi:10.1016/0022-1694(91)90131-Z.

    Article  Google Scholar 

  • WHO (1984). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. Circular No. 696. Washington, D.C.: US Department of Agriculture.

    Google Scholar 

  • Zhang, J., Haung, R., Jiu, M. G., & Zhou, Q. (1990). Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang). Journal of Geophysical Research, 95, 13277–13288. doi:10.1029/JC095iC08p13277.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., Letolle, R., & Jusserand, C. (1995). Major element chemistry of the Huanghe (Yellow river), China—weathering processes and chemical fluxes. Journal of Hydrology (Amsterdam), 168, 173–203. doi:10.1016/0022-1694(94)02635-O.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Giridharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giridharan, L., Venugopal, T. & Jayaprakash, M. Identification and evaluation of hydrogeochemical processes on river Cooum, South India. Environ Monit Assess 162, 277–289 (2010). https://doi.org/10.1007/s10661-009-0795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0795-y

Keywords

Navigation