Abstract
In this study, water samples were collected from 86 water treatment plants for analysis of haloacetic acids (HAAs) and trihalomethanes (THMs) from February to March, 2007 and from July to August, 2007. Both seasonal and geographical variations of disinfection by-products (DBPs) in drinking water of Taiwan were presented. The results showed that the five HAA concentrations (HAA5) were 1.0–38.9 μg/L in the winter and 0.2–46.7 μg/L in the summer; and the total THMs were ND-99.4 μg/L in the winter and ND-133.2 μg/L in the summer. For samples taken from the main Taiwan island, dichloroacetic acid (29.4–31.7%) and trichloroacetic acid (25.3–27.6%) were the two major HAA species, and trichloromethane was the major THM species (49.9–62.2%) in finished water. For water treatment plants located on the offshore islands outside of Taiwan, high bromide concentration was found in raw water, and higher percentage of brominated THMs and HAAs were formed in the overall formation. A statistically significant (P < 0.005) logarithmic linear regression model was found to be useful to describe the correlations between TTHM and HAA5 or nine HAAs (HAA5 = 1.219 ×TTHM 0.754, R 2 = 0.658; HAA9 = 1.824 ×TTHM 0.735, R 2 = 0.678). No apparent difference was observed for DBPs concentrations between finished water and distribution samples in this study.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Austin, E. W., Parrish, J. M., Kinder, D. H., & Bull, R. J. (1996). Lipid peroxidation and formation of 8-hydroxydeoxyguanosine from acute doses of halogenated acetic acids. Fundamental and Applied Toxicology, 31(1), 77–82. doi:10.1006/faat.1996.0078.
Baribeau, H., Krasner, S. W., Chinn, R., & Singer, P. C. (2005). Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. Journal—American Water Works Association, 97(2), 69–81.
Bove, F. J., Fulcomer, M. C., Klotz, J. B., Esmart, J., Dufficy, E. M., & Savrin, J. E. (1995). Public drinking-water contamination and birth outcomes. American Journal of Epidemiology, 141(9), 850–862.
Cantor, K. P., Hoover, R., Mason, T. J., & McCabe, L. J. (1978). Associations of cancer mortality with halomethanes in drinking-water. Journal of the National Cancer Institute, 61(4), 979–985.
Chang, H. H. (2004). Analysis and distribution of haloacetic acids in drinking water of Taiwan (p. 124). Institute of Environmental Health, College of Public Health. Taipei, Taiwan: National Taiwan University.
Chiang, P. C., & Chang, Y. Y. (2003). The evaluation of microbial and potability standards in drinking water quality standards. Taiwan EPA Project Report, EPA-92-J105–02–101, Taiwan (in Chinese).
Cicmanec, J. L., Condie, L. W., Olson, G. R., & Wang, S. R. (1991). 90-Day toxicity study of dichloroacetate in dogs. Fundamental and Applied Toxicology, 17(2), 376–389. doi:10.1016/0272-0590(91)90227-U.
Elshorbagy, W. E., Abu-Qdais, H., & Elsheamy, M. K. (2000). Simulation of THM species in water distribution systems. Water Research, 34(13), 3431–3439. doi:10.1016/S0043–1354(00)00231–1.
Giller, S., LeCurieux, F., Erb, F., & Marzin, D. (1997). Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis, 12(5), 321–328. doi:10.1093/mutage/12.5.321.
Johnson, P. D., Dawson, B. V., & Goldberg, S. J. (1998). Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology, 32(2), 540–545. doi:10.1016/S0735-1097(98)00232-0.
Kato-Weinstein, J., Lingohr, M. K., Orner, G. A., Thrall, B. D., & Bull, R. J. (1998). Effects of dichloroacetate on glycogen metabolism in B6C3F1 mice. Toxicology, 130(2–3), 141–154. doi:10.1016/S0300-483X(98)00106-1.
Kramer, M. D., Lynch, C. F., Isacson, P., & Hanson, J. W. (1992). The association of waterborne chloroform with intrauterine growth-retardation. Epidemiology (Cambridge, Mass.), 3(5), 407–413. doi:10.1097/00001648-199209000-00005.
Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., et al. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 40(23), 7175–7185. doi:10.1021/es060353j.
Linder, R. E., Klinefelter, G. R., Strader, L. F., Suarez, J. D., & Dyer, C. J. (1994). Acute spermatogenic effects of bromoacetic acids. Fundamental and Applied Toxicology, 22(3), 422–430. doi:10.1006/faat.1994.1048.
Nelson, G. M., Swank, A. E., Brooks, L. R., Bailey, K. C., & George, S. E. (2001). Metabolism, microflora effects, and genotoxicity in haloacetic acid-treated cultures of rat cecal microbiota. Toxicological Sciences, 60(2), 232–241. doi:10.1093/toxsci/60.2.232.
Parrish, J. M., Austin, E. W., Stevens, D. K., Kinder, D. H., & Bull, R. J. (1996). Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice. Toxicology, 110(1–3), 103–111. doi:10.1016/0300-483X(96)03342–2.
Rathbun, R. E. (1996). Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers. The Science of the Total Environment, 191(3), 235–244. doi:10.1016/S0048-9697(96)05266-7.
Rodriguez, M. J., Serodes, J., & Roy, D. (2007a). Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Research, 41(18), 4222–4232. doi:10.1016/j.watres.2007.05.048.
Rodriguez, M. J., Serodes, J. B., Levallois, P., & Prouix, F. (2007b). Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. Journal of Environmental Engineering and Science, 6(4), 355–365. doi:10.1139/S06-055.
Rook, J. J. (1974). Formation of haloforms during chlorination of naturals waters. Journal Water Treatment and Examination, 23(3), 234–243.
Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. The Science of the Total Environment, 321(1–3), 21–46. doi:10.1016/j.scitotenv.2003.05.001.
Shoaf, D. R., & Singer, P. C. (2007). An analysis of monitoring data for the stage 1 disinfectants/disinfection byproducts rule. Journal—American Water Works Association, 99(10), 69–80.
Stacpoole, P. W. (1989). The pharmacology of dichloroacetate. Metabolism: Clinical and Experimental, 38(11), 1124–1144. doi:10.1016/0026-0495(89)90051-6.
Toth, G. P., Kelty, K. C., George, E. L., Read, E. J., & Smith, M. K. (1992). Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundamental and Applied Toxicology, 19(1), 57–63. doi:10.1016/0272-0590(92)90028-G.
TWEPA (2007). River Water Quality Statistics. In Natonal Environmental Water Quality Information Network – 2007 Annual Report. Taiwan Environmental Protection Agency. http://wqeng.epa.gov.tw/ (in Chinese).
Urano, K., Wada, H., & Takemasa, T. (1983). Empirical rate-equation for trihalomethane formation with chlorination of humic substances in water. Water Research, 17(12), 1797–1802. doi:10.1016/0043-1354(83)90202-6.
Urbansky, E. T. (2000). Techniques and methods for the determination of haloacetic acids in potable water. Journal of Environmental Monitoring, 2(4), 285–291. doi:10.1039/b002977g.
USEPA (1999b, EPA 815-R-99–013). Disinfection profiling and benchmarking guidance manual. In Disinfection profiling and benchmarking guidance manual. U.S. Environmental Protection Agency.
USEPA (2001a, EPA 816-F-01-007). National primary drinking water standards. In National primary drinking water standards. U.S. Environmental Protection Agency.
USEPA (2003, EPA 815-B-03-002). Method 552.3. Determination of haloacetic acids and dalapon in drinking water by liquid–liquid microextraction, derivatization, and gas chromatography with electron capture detection. In Determination of haloacetic acids and dalapon in drinking water by liquid–liquid microextraction, derivatization, and gas chromatography with electron capture detection. U.S. Environmental Protection Agency, Method 552.3.
Uyak, V., Ozdemir, K., & Toroz, I. (2007). Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. The Science of the Total Environment, 378(3), 269–280. doi:10.1016/j.scitotenv.2007.02.041.
Villanueva, C. M., Kogevinas, M., & Grimalt, J. O. (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953–958. doi:10.1016/S0043-1354(02)00411-6.
Waller, K., Swan, S. H., DeLorenze, G. & Hopkins, B. (1998). Trihalomethanes in drinking water and spontaneous abortion. Epidemiology (Cambridge, Mass.), 9(2), 134–140. doi:10.1097/00001648-199803000-00006.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708. doi:10.1021/es030360x.
WHO (1993). Guidelines for drinking-water quality. In Guidelines for drinking-water quality. Geneva: World Health Organization
Xie, S. G., Wen, D. H., Shi, D. W., & Tang, X. Y. (2006). Reduction of precursors of chlorination by-products in drinking water using fluidized-bed biofilm reactor at low temperature. Biomedical and Environmental Sciences, 19(5), 360–366.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chang, H.H., Tung, H.H., Chao, C.C. et al. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environ Monit Assess 162, 237–250 (2010). https://doi.org/10.1007/s10661-009-0792-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10661-009-0792-1