Environmental Monitoring and Assessment

, Volume 161, Issue 1–4, pp 423–438 | Cite as

Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data

Article

Abstract

Coral reefs have experienced extensive mortality over the past few decades as a result of temperature-induced mass bleaching events. There is an increasing realization that other environmental factors, including water mixing, solar radiation, water depth, and water clarity, interact with temperature to either exacerbate bleaching or protect coral from mass bleaching. The relative contribution of these factors to variability in mass bleaching at a global scale has not been quantified, but can provide insights when making large-scale predictions of mass bleaching events. Using data from 708 bleaching surveys across the globe, a framework was developed to predict the probability of moderate or severe bleaching as a function of key environmental variables derived from global-scale remote-sensing data. The ability of models to explain spatial and temporal variability in mass bleaching events was quantified. Results indicated approximately 20% improved accuracy of predictions of bleaching when solar radiation and water mixing, in addition to elevated temperature, were incorporated into models, but predictive accuracy was variable among regions. Results provide insights into the effects of environmental parameters on bleaching at a global scale.

Keywords

Coral bleaching Sea surface temperature Solar radiation Logistic regression Model selection Remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2009_758_MOESM1_ESM.doc (163 kb)
(DOC 163 kb)

References

  1. Baker, A. C., Starger, C. J., McClanahan, T. R., & Glynn, P. W. (2004). Corals’ adaptive response to climate change. Nature, 430, 742. doi:10.1038/430741a.CrossRefGoogle Scholar
  2. Ben-Haim, Y., & Rosenberg, E. (2002). A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Marine Biology (Berlin), 141, 47–55. doi:10.1007/s00227-002-0797-6.CrossRefGoogle Scholar
  3. Berkelmans, R., De’ath, G., Kininmonth, S., & Skirving, W. J. (2004). A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. Coral Reefs, 23, 74–83. doi:10.1007/s00338-003-0353-y.CrossRefGoogle Scholar
  4. Brown, B. E., Dunne, R. P., Goodson, M. S., & Douglas, A. E. (2002). Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs, 21, 119–126.Google Scholar
  5. Douglas, A. E. (2003). Coral bleaching—how and why? Marine Pollution Bulletin, 46, 385–392. doi:10.1016/S0025-326X(03)00037-7.CrossRefGoogle Scholar
  6. Dunne, R. P., & Brown, B. E. (2001). The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea 1993–1998. Coral Reefs, 20, 201–210.Google Scholar
  7. Floros, C. D., Samways, M. J., & Armstrong, B. (2004). Taxonomic patterns of bleaching within a South African coral assemblage. Biodiversity and Conservation, 13, 1175–1194. doi:10.1023/B:BIOC.0000018151.67412.c7.CrossRefGoogle Scholar
  8. Gattuso, J. P., Gentili, B., Duarte, C. M., Kleypas, J. A., Middelburg, J. J., & Antoine, D. (2006). Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences, 3, 489–513.CrossRefGoogle Scholar
  9. Gleason, D. F., & Wellington, G. M. (1993). Ultraviolet radiation and coral bleaching. Nature, 365, 836–838. doi:10.1038/365836a0.CrossRefGoogle Scholar
  10. Glynn, P. W. (1984). Widespread coral mortality and the 1982/83 El Nino warming event. Environmental Conservation, 11, 133–146.CrossRefGoogle Scholar
  11. Glynn, P. W. (1991). Coral reef bleaching in the 1980s and possible connections with global warming. Trends in Ecology & Evolution, 6, 175–179. doi:10.1016/0169-5347(91)90208-F.CrossRefGoogle Scholar
  12. Glynn, P. W. (1993). Coral reef bleaching: Ecological perspectives. Coral Reefs, 12, 1–17. doi:10.1007/BF00303779.CrossRefGoogle Scholar
  13. Glynn, P. W., Imai, R., Sakai, K., Nakano, Y., & Yamazato, K. (1992). Experimental responses of Okinawan (Ryukyu Islands, Japan) reef corals to high sea temperature and UV radiation. Proceedings of the 7th International Coral Reef Symposium, 1, 27–37.Google Scholar
  14. Goreau, T. J. (1990). Coral bleaching in Jamaica. Nature, 343, 417. doi:10.1038/343417a0.CrossRefGoogle Scholar
  15. Goreau, T. J., & Hayes, R. L. (1994). Coral bleaching and ocean “hot spots”. Ambio, 23, 176–180.Google Scholar
  16. Goreau, T., McClanahan, T., Hayes, R., & Strong, A. E. (2000). Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology, 14, 5–15. doi:10.1046/j.1523-1739.2000.00011.x.CrossRefGoogle Scholar
  17. Hendee, J. C., Stabenau, E. R., Florit, L., Manzello, D., & Jeffris, C. (2005). Infrastructure and capabilities of a near real-time meteorological and oceanographic in situ instrumented array, and its role in marine environmental decision support. In L. L. Richardson & E. R. LaDrew (Eds.), Remote sensing of aquatic ecosystem processes (pp. 217–250). Netherlands: Springer.Google Scholar
  18. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine & Freshwater Research, 50, 839–866. doi:10.1071/MF99078.CrossRefGoogle Scholar
  19. Hoegh-Guldberg, O., Jones, R. J., Ward, S., & Loh, W. K. (2002). Is coral bleaching really adaptive? Nature, 415, 601–602. doi:10.1038/415601a.CrossRefGoogle Scholar
  20. Jokiel, P. L., & Brown, E. K. (2004). Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Global Change Biology, 10, 1627–1641. doi:10.1111/j.1365-2486.2004.00836.x.CrossRefGoogle Scholar
  21. Legendre, P., & Legendre, L. (1998). Numerical ecology. Netherlands: Elsevier Science.Google Scholar
  22. Lesser, M. P., & Lewis, S. (1996). Action spectrum for the effects of UV radiation on photosynthesis in the hermatypic coral Pocillopora damicornis. Marine Ecology Progress Series, 134, 171–177. doi:10.3354/meps134171.CrossRefGoogle Scholar
  23. Liu, G., Strong, A. E., Skirving, W., & Arzayus, L. F. (2005). Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. Proceedings of the 10th International Coral Reef Symposium, 1, 1783–1793.Google Scholar
  24. MacKay, D. B. (1973). Spatial measurement of retail store demand. JMR, Journal of Marketing Research, 10, 447–453. doi:10.2307/3149395.CrossRefGoogle Scholar
  25. Maina, J., Venus, V., McClanahan, T. R., & Ateweberhan, M. (2008). Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecological Modelling, 212, 180–199. doi:10.1016/j.ecolmodel.2007.10.033.CrossRefGoogle Scholar
  26. Manzello, D. P., Brandt, M., Smith, T. B., Lirman, D., Hendee, J. C., & Nemeth, R. S. (2007). Hurricanes benefit bleached corals. Proceedings of the National Academy of Sciences of the United States of America, 104, 12035–12039. doi:10.1073/pnas.0701194104.CrossRefGoogle Scholar
  27. Marshall, P., & Schuttenberg, H. (2006). A reef manager’s guide to coral bleaching. Townsville: Great Barrier Reef Marine Park Authority.Google Scholar
  28. Mason, S. J., & Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quarterly Journal of the Royal Meteorological Society, 30, 291–303.Google Scholar
  29. McClanahan, T. R., Ateweberhan, M., Sebastian, C. R., Graham, N. A. J., Wilson, S. K., Bruggeman, J. H., et al. (2007). Predictability of coral bleaching from synoptic satellite and in situ temperature observations. Coral Reefs, 26, 695–701. doi:10.1007/s00338-006-0193-7.CrossRefGoogle Scholar
  30. McField, M. D. (1999). Coral response during and after mass bleaching in Belize. Bulletin of Marine Science, 64, 155–172.Google Scholar
  31. McGeoch, M. A., & Price, P. W. (2004). Spatial abundance structures in an assemblage of gall-forming sawflies. Journal of Animal Ecology, 73, 506–516. doi:10.1111/j.0021-8790.2004.00825.x.CrossRefGoogle Scholar
  32. Mumby, P. J., Skirving, W., Strong, A. E., Hardy, J. T., LeDrew, E. F., Hochberg, E. J., et al. (2004). Remote sensing of coral reefs and their physical environment. Marine Pollution Bulletin, 48, 219–228. doi:10.1016/j.marpolbul.2003.10.031.CrossRefGoogle Scholar
  33. Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691–692. doi:10.1093/biomet/78.3.691.CrossRefGoogle Scholar
  34. Obura, D. (2005). Resilience and climate change: Lessons from coral reefs and bleaching in the Western Indian Ocean. Estuarine, Coastal and Shelf Science, 63, 353–372. doi:10.1016/j.ecss.2004.11.010.CrossRefGoogle Scholar
  35. O’Reilly, J. E., Maritorena, S., O’Brien, M. C., Siegel, D. A., Toole, D., Menzies, D., et al. (2000). SeaWiFS Postlaunch calibration and validation analyses, Part 3. In S. B. Hooker & E. R. Firestone (Eds.), NASA Tech Memo 2003–206892 (Vol. 11). Maryland: NASA Goddard Space Flight Center.Google Scholar
  36. Otis, D., Carder, K., English, D., & Ivey, J. E. (2004). CDOM transport from the Bahamas Banks. Coral Reefs, 23, 152–160. doi:10.1007/s00338-003-0356-8.CrossRefGoogle Scholar
  37. Patt, F. S., Barnes, R. A., Eplee, R. E., Jr, Franz, B. A., Robinson, W. D., Feldman, G. C., et al. (2003). Algorithm Updates for the Fourth SeaWiFS Data Reprocessing. In S. B. Hooker & E. R. Firestone (Eds.), NASA Tech Memo 2003–206892 (Vol. 22). Maryland: NASA Goddard Space Flight Center.Google Scholar
  38. Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. New York: Cambridge University Press.Google Scholar
  39. Riegl, B., & Piller, W. E. (2003). Possible refugia for reefs in times of environmental stress. International Journal of Earth Sciences, 92, 520–531. doi:10.1007/s00531-003-0328-9.CrossRefGoogle Scholar
  40. Rowan, R., Knowlton, N., Baker, A., & Jara, J. (1997). Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature, 388, 265–269. doi:10.1038/40843.CrossRefGoogle Scholar
  41. Santavy, D. L., Summers, J. K., Engle, V. D., & Harwell, L. C. (2005). The condition of coral reefs in South Florida, 2000. using coral disease and bleaching as indicators. Environmental Monitoring and Assessment, 100, 129–152. doi:10.1007/s10661-005-4767-6.CrossRefGoogle Scholar
  42. Warner, M. E., LaJeunesse, T. C., Robison, J. D., & Thur, R. M. (2006). The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnology and Oceanography, 51, 1887–1897.CrossRefGoogle Scholar
  43. West, J. M., & Salm, R. V. (2003). Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conservation Biology, 17, 956–967. doi:10.1046/j.1523–1739.2003.02055.x.CrossRefGoogle Scholar
  44. Wilkinson, C. R. (2008). Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville, Australia.Google Scholar
  45. Wooldridge, S., & Done, T. (2004). Learning to predict large-scale coral bleaching from past events: A Bayesian approach using remotely sensed data, in-situ data, and environmental proxies. Coral Reefs, 23, 96–108. doi:10.1007/s00338-003-0361-y.CrossRefGoogle Scholar
  46. Yee, S. H., Santavy, D. L., & Barron, M. G. (2008). Comparing environmental influences on coral bleaching across and within species using clustered binomial regression. Ecological Modelling, 218, 162–174. doi:10.1016/j.ecolmodel.2008.06.037.CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.United States Environmental Protection Agency, Gulf Ecology DivisionNational Health and Environmental Effects Research LaboratoryGulf BreezeUSA

Personalised recommendations