Skip to main content
Log in

Identification of ozone stress in Indian rice through foliar injury and differential protein profile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study showed a possibility to use phenotypic and proteomic responses in rice plants as an in vivo biomarker to detect higher concentrations of ambient ozone (O3). The investigation was done on two cultivars of Indian rice using open top chambers ventilated with charcoal filtered air, ambient air, ambient air with 10 ppb O3 exposure and ambient air with 20 ppb O3 exposure at a rural site of Varanasi, India. Results showed that the magnitude of O3 induced specific type of foliar injury directly depends on the duration and concentration of O3 exposure. Even the internal protein profile of injured and normal leaf demonstrated a differential expression, which directly indicates towards the molecular basis of plant’s response against O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A., & Saji, H. (2002). Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2, 947–959. doi:10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J.

    Article  CAS  Google Scholar 

  • Agrawal, M., Singh, B., Rajput, M., Marshall, F., & Bell, J. N. B. (2003). Effect of air pollution on peri-urban agriculture: A case study. Environmental Pollution, 126, 323–329. doi:10.1016/S0269-7491(03)00245-8.

    Article  CAS  Google Scholar 

  • Bell, J. N. B., & Ashmore, M. R. (1986). Design and construction of open top chambers and methods of filteration (equipment and cost). In Proceedings of II European open top chambers workshop. September 1906. Freiburg: CEC.

  • Biswas, D. K., Xu, H., Li, Y. G., Liu, M. Z., Chen, Y. H., Sun, J. Z., et al. (2008). Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. Journal of Experimental Botany, 59, 1–13. doi:10.1093/jxb/ern022.

    Article  Google Scholar 

  • Feng, Y. W., Komatsu, S., Furukawa, T., Koshiba, T., & Kohno, Y. (2008). Proteome analysis of proteins responsive to ambient and elevated ozone in rice seedlings. Agriculture Ecosystems & Environment, 125, 255–265. doi:10.1016/j.agee.2008.01.018.

    Article  CAS  Google Scholar 

  • Fiscus, E. L., Booker, F. L., & Burkey, K. O. (2005). Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant, Cell & Environment, 28, 997–1011. doi:10.1111/j.1365-3040.2005.01349.x.

    Article  CAS  Google Scholar 

  • Gombert, S., Asta, J., & Seaward, M. R. D. (2006). Lichens and tobacco plants as complementary biomonitors of air pollution in the Grenoble area (Isere, Southeast France). Ecological Indicators, 6, 429–443. doi:10.1016/j.ecolind.2005.06.001.

    Article  CAS  Google Scholar 

  • Ishii, S., Marshall, F. M., & Bell, J. N. B. (2004). Physiological and morphological responses of locally grown Malaysian Rice Cultivars (Oryza sativa L.) to different ozone concentrations. Water, Air, and Soil Pollution, 155, 205–221. doi:10.1023/B:WATE.0000026528.86641.5b.

    Article  CAS  Google Scholar 

  • Jain, S. L., Arya, B. C., Kumar, A., Ghude, S. D., & Kulkarni, P. S. (2005). Observational study of surface ozone at New Delhi, India. International Journal of Remote Sensing, 26, 3515–3524. doi:10.1080/01431160500076616.

    Article  Google Scholar 

  • Klumpp, A., Ansel, W., Klumpp, G., Belluzzo, N., Calatayud, V., & Chaplin, N. (2002). EuroBionet: A Pan-European biomonitoring network for urban air quality assessment. Environmental Science and Pollution Research, 9, 199–203. doi:10.1007/BF02987489.

    Article  CAS  Google Scholar 

  • Laffray, X., Rose, C., & Garrec, J. P. (2007). Estimation of ozone concentration in a Valley of the Alps mountains based on Bel-W3 tobacco leaf injury. Water, Air, and Soil Pollution, 186, 29–42. doi:10.1007/s11270-007-9460-7.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenbourgh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Maggs, R., & Ashmore, M. R. (1998). Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution, 103, 159–170. doi:10.1016/S0269-7491(98)00129-8.

    Article  CAS  Google Scholar 

  • Manning, W. J. (1997). The use of plants as bioindicators of ozone. In A. Bytnerowicz, M. J. Arbaugh, & S. L. Schilling (Eds.), Proceedings of international symposium on air pollution and climate change effects on forest ecosystems, 1996, Riverside, California. General Technical Report PSW-GTR-166 (pp. 19–26). Albany: Pacific Southwest Research Station, Forest Service, US Department of Agriculture.

  • Mauzerall, D. L., & Wang, X. (2001). Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe and Asia. Annual Review of Energy and the Environment I, 26, 237–268.

    Article  Google Scholar 

  • Nali, C., Balducci, E., Frati, L., Paoli, L., Loppi, S., & Lorenzini, G. (2007). Integrated biomonitoring of air quality with plants and lichens: A case study on ambient ozone from central Italy. Chemosphere, 67(11), 2169–2176. doi:10.1016/j.chemosphere.2006.12.036.

    Article  CAS  Google Scholar 

  • Nali, C., Francini, A., & Lorenzini, G. (2006). Biological monitoring of ozone: The twenty-years Italian experience. Journal of Environmental Monitoring, 8, 25–32. doi:10.1039/b510303g.

    Article  CAS  Google Scholar 

  • Pleijel, H., Rerglen Eriksen, A., Danielsson, H., Bondesson, N., & Selldén, G. (2006). Differential ozone sensitivity in an old and a modern Swedish wheat cultivars—grain yield and quality, leaf chlorophyll and stomatal conductance. Environmental and Experimental Botany, 56, 63–71. doi:10.1016/j.envexpbot.2005.01.004.

    Article  CAS  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2007). Assessment of yield losses in tropical wheat using open top chambers. Atmospheric Environment, 41, 9543–9554. doi:10.1016/j.atmosenv.2007.08.038.

    Article  CAS  Google Scholar 

  • Rao, M. V., Hale, B. A., & Ormrod, D. P. (1995). Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiology, 109, 421–432.

    CAS  Google Scholar 

  • Tiwari, S., & Agrawal, M. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chamber. Environmental Monitoring and Assessment, 119, 15–30. doi:10.1007/s10661-005-9001-z.

    Article  CAS  Google Scholar 

  • Tiwari, S., Agrawal, M., & Manning, W. J. (2005). Assessing the impact of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylenediurea (EDU). Environmental Pollution, 138, 153–163. doi:10.1016/j.envpol.2005.02.008.

    Article  CAS  Google Scholar 

  • Tiwari, S., Rai, R., & Agrawal, M. (2008). Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. International Journal of Remote Sensing, 29(15–16), 4499–4514.

    Article  Google Scholar 

  • Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442. doi:10.1016/j.atmosenv.2004.03.030.

    Article  CAS  Google Scholar 

  • Wahid, A. (2006). Influence of atmospheric pollutants on agriculture in developing countries: A case study with three new wheat varieties in Pakistan. The Science of the Total Environment, 371, 304–313. doi:10.1016/j.scitotenv.2006.06.017.

    Article  CAS  Google Scholar 

  • Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground-level ozone in China: Distribution and effect on crop yields. Environmental Pollution, 147, 394–400. doi:10.1016/j.envpol.2006.05.006.

    Article  CAS  Google Scholar 

  • Yonekura, T., Shimada, T., Miwa, M., Arzate, A., & Ogawa, K. (2005). Impacts of tropospheric ozone on growth and yield of rice. Journal of Agricultural Meteorology, 60, 1045–1048.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Agrawal, S.B. Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161, 205–215 (2010). https://doi.org/10.1007/s10661-008-0738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0738-z

Keywords

Navigation