Skip to main content
Log in

Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dissolved organic matter (DOM) can react with chlorine and yield undesirable disinfection byproducts (DBPs), e.g., trihalomethanes (THMs). Numerous studies have demonstrated that various DOM constituents have DBP formation potentials. We explored in this study the use of fluorescence excitation–emission (EEM) spectroscopy to identify THM precursors in 55 lakes in Missouri, USA. EEMs of the lake waters were decomposed into five factors of different origins through parallel factor analysis. The correlations between the component scores of the factors and THM formation potentials reveal that factors 1 and 2 are likely THM precursors and provided better surrogates than SUVA (dissolved organic carbon-normalized UV254) for predicting DBP formation potential. Thus, monitoring the component scores of the DOM-origin factors would provide a practical tool to identify THM precursors and facilitate utilities to choose appropriate techniques for DBP mitigation and optimize the degree of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C. A., & Bro, R. (2000). The N-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 52, 1–4. doi:10.1016/S0169-7439(00)00071-X.

    Article  Google Scholar 

  • Baker, A. (2001). Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers. Environmental Science & Technology, 35, 948–953. doi:10.1021/es000177t.

    Article  CAS  Google Scholar 

  • Baker, A., & Curry, M. (2004). Fluorescence of leachates from three contrasting landfills. Water Research, 38, 2605–2613. doi:10.1016/j.watres.2004.02.027.

    Article  CAS  Google Scholar 

  • Bellar, T. A., & Lichtenberg, J. J. (1974). Determining volatile organics at microgram per litre levels by gas chromatography. J AWWA, 66(12), 739–744.

    CAS  Google Scholar 

  • Boyce, S. D., & Hornig, J. F. (1983). Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science & Technology, 17, 202–211. doi:10.1021/es00110a005.

    Article  CAS  Google Scholar 

  • Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38, 149–171. doi:10.1016/S0169-7439(97)00032-4.

    Article  CAS  Google Scholar 

  • Chow, A. T., Gao, S.-D., & Dahlgren, R. A. (2005). Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: A review. Journal of Water Supply: Research & Technology—Aqua, 54(8), 475–507.

    CAS  Google Scholar 

  • Christensen, J. H., Hansen, A. B., Mortensen, J., & Andersen, O. (2005). Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Analytical Chemistry, 77(7), 2210–2217. doi:10.1021/ac048213k.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Marine Chemistry, 51, 325–346. doi:10.1016/0304-4203(95)00062-3.

    Article  CAS  Google Scholar 

  • Coble, P. G., Green, S. A., Blough, N. V., & Gagosian, R. B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348, 432–435. doi:10.1038/348432a0.

    Article  CAS  Google Scholar 

  • Coble, P. G., Del Castillo, C. E., & Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-sea Research, Part 2, 45, 2195–2223.

    Article  CAS  Google Scholar 

  • Edzwald, J. K., Becker, W. C., & Wattier, K. L. (1985). Surrogate parameters for monitoring organic matter and THM precursors. J AWWA, 77, 122–131.

    CAS  Google Scholar 

  • Hall, G. J., Clow, K. E., & Kenny, J. E. (2005). Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis. Environmental Science & Technology, 39(19), 7560–7567. doi:10.1021/es0503074.

    Article  CAS  Google Scholar 

  • Hua, B., Dolan, F., McGhee, C., Clevenger, T., & Deng, B. (2007a). Water source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. International Journal of Environmental Analytical Chemistry, 87(2), 135–147. doi:10.1080/03067310600922154.

    Article  CAS  Google Scholar 

  • Hua, B., Veum, K., Koirala, A., Jones, J., Clevenger, T., & Deng, B. (2007b). Fluorescence fingerprints and total trihalomethanes and N-nitrosodimethylamine formation potentials. Environmental Chemistry Letters, 5, 73–77. doi:10.1007/s10311-006-0085-7.

    Article  CAS  Google Scholar 

  • Kitis, M., Karanfil, T., Kilduff, J. E., & Wigton, A. (2001). The reactivity of natural organic matter to disinfection byproducts formation and its relation to specific ultraviolet absorbance. Water Science and Technology, 43(2), 9–16.

    CAS  Google Scholar 

  • Kwon, B., Lee, S., Cho, J., Ahn, H., Lee, D., & Shin, H. S. (2005). Biodegradability, DBP formation, and membrane fouling potential of natural organic matter: Characterization and controllability. Environmental Science & Technology, 39(3), 732–739. doi:10.1021/es049919z.

    Article  CAS  Google Scholar 

  • Leenheer, J. A., & Croue, J. P. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37(1), 18A–26A. doi:10.1021/es032333c.

    Article  CAS  Google Scholar 

  • Mopper, K., & Schultz, C. A. (1993). Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Marine Chemistry, 41, 229–238. doi:10.1016/0304-4203(93)90124-7.

    Article  CAS  Google Scholar 

  • MWH. Revised by Crittenden, J. C., Trusell, R. R., Hand, D. W., & Howe, K. J., Tchobanoglous, G. (2005). Water treatment: Principles and design (2nd ed.) Hoboken: Wiley.

  • Nagata, T. (2002). Production mechanisms of dissolved organic matter. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 121–152). New York: Wiley.

    Google Scholar 

  • Najm, I. N., & Trussell, R. R. (2001). NDMA formation in water and wastewater. J AWWA, 93(3), 92–99.

    Google Scholar 

  • Najm, I. N., Patania, N. L., Jacangelo, J. G., & Krasner, S. W. (1994). Evaluating surrogates for disinfection by-products. J AWWA, 86, 98–106.

    CAS  Google Scholar 

  • Nakajima, F., Hanabusa, M., & Furumai, H. (2002). Excitation–emission fluorescence spectra and trihalomethane formation potential in the Tama River, Japan. Water Science & Technology: Water Supply, 2, 481–486.

    CAS  Google Scholar 

  • Nikolaou, A. D., & Lekkas, T. D. (2001). The role of natural organic mater during formation of chlorination by-products: A review. Acta Hydrochimica et Hydrobiologica, 29(2–3), 63–77. doi:10.1002/1521-401X(200109)29:2/3<63::AID-AHEH63>3.0.CO;2-C.

    Article  CAS  Google Scholar 

  • Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: Byproduct formation and chemical interpretation. Environmental Science & Technology, 24, 1655–1664. doi:10.1021/es00081a005.

    Article  CAS  Google Scholar 

  • Senesi, N. (1993). In A. J. Beckers, K. C. Jones, M. B. H. Hayers, & U. Mingelgrin (Eds.), Organic substances in soil and water: Natural constituents and their influences on contaminant behaviour (pp. 73–101). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Smilde, A., Bro, R., & Geladi, P. (2004). Multi-way analysis: Applications in the chemical sciences. Chichester: Wiley.

    Book  Google Scholar 

  • Stedmon, C. A., & Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2), 686–697.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4), 239–254. doi:10.1016/S0304-4203(03)00072-0.

    CAS  Google Scholar 

  • Stewart, A. J., & Wetzel, R. G. (1980). Fluorescence: Absorbance ratios—a molecular-weight tracer of dissolved organic matter. Limnology and Oceanography, 25, 559–564.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. (1995). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed.) New York: Wiley.

    Google Scholar 

  • Thurman, E. M. (1985). Organic geochemistry of natural waters. Dordrecht: Martinus Nijhoff–Dr. Junk.

    Google Scholar 

  • Trussell, R. R. (1978). Formation of trihalomethanes. J AWWA, 70(11), 604–612.

    CAS  Google Scholar 

  • Yan, Y., Li, H., & Myrick, M. L. (2000). Fluorescence fingerprint of waters: Excitation–emission matrix spectroscopy as a tracking tool. Applied Spectroscopy, 54, 1539–1542. doi:10.1366/0003702001948475.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, B., Veum, K., Yang, J. et al. Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters. Environ Monit Assess 161, 71–81 (2010). https://doi.org/10.1007/s10661-008-0728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0728-1

Keywords

Navigation