Skip to main content

The impact of climate-induced distributional changes on the validity of biological water quality metrics

Abstract

We present data on the distributional changes within an order of macroinvertebrates used in biological water quality monitoring. The British Odonata (dragonflies and damselflies) have been shown to be expanding their range northwards and this could potentially affect the use of water quality metrics. The results show that the families of Odonata that are used in monitoring are shifting their ranges poleward and that species richness is increasing through time at most UK latitudes. These past distributional shifts have had negligible effects on water quality indicators. However, variation in Odonata species richness (particularly in species-poor regions) has a significant effect on water quality metrics. We conclude with a brief review of current and predicted responses of aquatic macroinvertebrates to environmental warming and maintain that caution is warranted in the use of such dynamic biological indicators.

This is a preview of subscription content, access via your institution.

References

  1. Buchwald, R. (1989). Die Bedeutung der Vegetation fur die Habitatbindung einiger Libellenarten der Quellmoore und Fliessgewasser. Phytocoenologia, 17, 307–448.

    Google Scholar 

  2. Buchwald, R. (1995). Structure and floristic composition of vegetation: What is the significance for the occurrence of dragonfly species? Paper presented at the 13th International Symposium on Odonatology, Essen.

  3. Burgmer, T., Hillebrand, H., & Pfenninger, M. (2007). Effects of climate-driven temperature change on the diversity of freshwater macroinvertebrates. Oecologia, 151, 93–103. doi:10.1007/s00442-006-0542-9.

    Article  CAS  Google Scholar 

  4. Chapman, D. (Ed.). (1996) Water Quality Assessments: A guide to the use of biota, sediments and water in environmental monitoring (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  5. Clark, T. E., & Samways, M. J. (1996). Dragonflies (Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. Journal of Applied Ecology, 33, 1001–1012. doi:10.2307/2404681.

    Article  Google Scholar 

  6. Corbet, P. S. (2004). Dragonflies: Behaviour and ecology of Odonata. Colchester: Harley.

    Google Scholar 

  7. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., et al. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81, 163–182. doi:10.1017/S1464793105006950.

    Article  Google Scholar 

  8. European Commission (2000). Establishing a framework for community action in the field of water policy. In Directive 2000/60/EC. Luxembourg.

  9. Foote, A. L., & Hornung, C. L. R. (2005). Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecological Entomology, 30, 273–283. doi:10.1111/j.0307-6946.2005.00701.x.

    Article  Google Scholar 

  10. Hassall, C., Thompson, D. J., French, G. C., & Harvey, I. F. (2007). Historical changes in the phenology of British Odonata are related to climate. Global Change Biology, 13, 933–941. doi:10.1111/j.1365-2486.2007.01318.x.

    Article  Google Scholar 

  11. Hawkes, H. A. (1997). Origin and development of the Biological Monitoring Working Party score system. Water Research, 32, 964–968. doi:10.1016/S0043-1354(97)00275-3.

    Article  Google Scholar 

  12. Heino, J. (2002). Concordance of species richness patterns among multiple freshwater taxa: A regional perspective. Biodiversity and Conservation, 11, 137–147. doi:10.1023/A:1014075901605.

    Article  Google Scholar 

  13. Hickling, R., Roy, D. B., Hill, J. K., & Thomas, C. D. (2005). A northward shift of range margins in British Odonata. Global Change Biology, 11, 502–506. doi:10.1111/j.1365-2486.2005.00904.x.

    Article  Google Scholar 

  14. Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12, 1–6. doi:10.1111/j.1365-2486.2006.01116.x.

    Article  Google Scholar 

  15. Menetrey, N., Sager, L., Lachavanne, J. B., & Oertli, B. (2005). Looking for metrics to assess the trophic state of ponds. Macroinvertebrates and amphibians. Aquatic Conservation: Marine & Freshwater Ecosystems, 15, 653–664. doi:10.1002/aqc.746.

    Article  Google Scholar 

  16. Moss, B. (1998). Ecology of freshwaters: Man and medium, past to future (3rd ed.). Blackwell: Oxford.

    Google Scholar 

  17. Moss, D., Furse, M. T., Wright, J. F., & Armitage, P. D. (1987). The prediction of the macroinvertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology, 17, 41–52. doi:10.1111/j.1365-2427.1987.tb01027.x.

    Article  Google Scholar 

  18. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371. doi:10.1046/j.1466-822X.2003.00042.x.

    Article  Google Scholar 

  19. Pritchard, G., & Leggott, M. (1987). Temperature, incubation rates and the origins of dragonflies. Advances in Odonatology, 3, 121–126.

    Google Scholar 

  20. Roy, D. B., & Thomas, J. A. (2003). Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia, 134, 439–444.

    CAS  Google Scholar 

  21. Shoo, L. P., Stephen, E. W., & Hero, J. -M. (2006). Detecting climate change induced range shifts: Where and how should we be looking? Austral Ecology, 31, 22–29. doi:10.1111/j.1442-9993.2006.01539.x.

    Article  Google Scholar 

  22. Walley, W. J., & Hawkes, H. A. (1996). A computer-based reappraisal of the Biological Monitoring Working Party score system using data from the 1990 river quality survey of England and Wales. Water Research, 30, 2086–2094. doi:10.1016/0043-1354(96)00013-9.

    Article  CAS  Google Scholar 

  23. Walley, W. J., & Hawkes, H. A. (1997). A computer-based development for the Biological Monitoring Working Party score system incorporating abundance rating, biotope type and indicator value. Water Research, 31, 201–210. doi:10.1016/S0043-1354(96)00249-7.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Hassall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hassall, C., Thompson, D.J. & Harvey, I.F. The impact of climate-induced distributional changes on the validity of biological water quality metrics. Environ Monit Assess 160, 451 (2010). https://doi.org/10.1007/s10661-008-0709-4

Download citation

Keywords

  • Biological indicators
  • Climate change
  • Dragonfly
  • Odonata
  • Range shifts
  • Water quality