Skip to main content
Log in

Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metallic elements (As, Be, Ca, Cd, Co, Cr, Fe, K, Mn, Ni, Pb, Sb, Se, and Zn) in PM10 aerosols were determined at urban and industrial sites, which are affected by traffic and residential sources, metallurgical activity, and petrochemical and steel works. The effect of the long-range transported Asian Dust on the metal content of aerosols was also examined. At the urban sampling site, concentrations of As, Cd, Pb, Se, and Zn were assigned to road traffic and combustion sources, Ca and Fe to soil dust sources from long-range transported Asian Dusts, and Cr and Ni to metallurgical sources transported from the nearby industrial complex, based on Principal Component Analysis (PCA). Enhanced Cr and Ni concentrations at the metallurgical industrial site suggest that local emissions from metal-assembly facilities and manufacture of alloys contributed to elevated levels of those metals. We also observed that petrochemical activities contributed to increased levels of Sb and Zn. When Asian Dust events occurred, Ca, Fe, K, and Zn concentrations dramatically increased compared to values without the Asian Dust. Two different types of Asian Dust events were observed. For the Asian Dust event 1 (4/1/2007), the Fe and K concentrations were much higher by a factor of 2–3 than those for the Asian Dust event 2 (3/2/2008), while As, Mn, and Zn concentrations were significantly higher on the Asian Dust event 2. Backward trajectory analysis showed that for the Asian Dust event 2, the air mass had passed over the heavily industrialized zones in China during long-range transport to the current sampling site, suggesting that the As, Mn, and Zn may have originated from industrial sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., & Greenwood, J. C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35(27), 4581–4591. doi:10.1016/S1352-2310(01)00190-X.

    Article  CAS  Google Scholar 

  • ATSDR (2007). Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxpro2.html.

  • Balasubramanian, R., & Qian, W. B. (2004). Characterization and source identification of airborne trace metals in Singapore. Journal of Environmental Monitoring, 6(10), 813–818. doi:10.1039/b407523d.

    Article  CAS  Google Scholar 

  • Baron, P. A., & Willeke, K. (2001). Aerosol measurement - principles, techniques, and applications (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Berg, T., Royset, O., Steinnes, E., & Vadset, M. (1995). Atmospheric trace element deposition: Principal component analysis of ICP-MS data from moss samples. Environmental Pollution, 88(1), 67–77. doi:10.1016/0269-7491(95)91049-Q.

    Article  CAS  Google Scholar 

  • Bilos, C., Colombo, J. C., Skorupka, C. N., & Presa, M. J. R. (2001). Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environmental Pollution, 111(1), 149–158. doi:10.1016/S0269-7491(99)00328-0.

    Article  CAS  Google Scholar 

  • Choi, J. C., Lee, M., Chun, Y., Kim, J., & Oh, S. (2001). Chemical composition and source signature of spring aerosol in Seoul, Korea. Journal of Geophysical Research D: Atmospheres, 106(D16), 18067–18074. doi:10.1029/2001JD900090.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.

  • EPA (2005). Standard Operating Procedure for the determination of metals in ambient particulates matter analyzed by Inductively Coupled Plasma/Mass Spectrometry. Standard Operating Procedure for the determination of metals in ambient particulates matter analyzed by Inductively Coupled Plasma/Mass Spectrometry.

  • Espinosa, A. J. F., Ternero Rodriguez, M., Barragan de la Rosa, F. J., & Jimenez Sanchez, J. C. (2001). Size distribution of metals in urban aerosols in Seville (Spain). Atmospheric Environment, 35(14), 2595–2601. doi:10.1016/S1352-2310(00)00403-9.

    Article  CAS  Google Scholar 

  • Gatari, M., Wagner, A., & Boman, J. (2005). Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya. The Science of the Total Environment, 341(1-3), 241–249. doi:10.1016/j.scitotenv.2004.09.031.

    Article  CAS  Google Scholar 

  • Hien, P. D., Binh, N. T., Truong, Y., Ngo, N. T., & Sieu, L. N. (2001). Comparative receptor modelling study of TSP, PM2 and PM2-10 in Ho Chi Minh City. Atmospheric Environment, 35(15), 2669–2678. doi:10.1016/S1352-2310(00)00574-4.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007). Climatic change, 2007. New York: Cambridge Univ. Press.

    Google Scholar 

  • John, K., Karnae, S., Crist, K., Kim, M., & Kulkarni, A. (2007). Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio. Journal of the Air & Waste Management Association, 57, 394–406.

    CAS  Google Scholar 

  • Kim, K. H. (2004). Relationships between spatial and temporal variabilities in airborne metal distributions in Won Ju City, Korea. Environment International, 29(7), 901–906. doi:10.1016/S0160-4120(03)00055-2.

    Article  CAS  Google Scholar 

  • Kim, K.–H., Lee, J.–H., & Jang, M.–S. (2002). Metals in airborne particulate matter from the first and second industrial complex area of Teajon city, Korea. Environmental Pollution, 118, 41–51. doi:10.1016/S0269-7491(01)00279-2.

    Article  CAS  Google Scholar 

  • Kim, M. K., & Jo, W. K. (2006). Elemental composition and source characterization of airborne PM10 at residences with relative proximities to metal-industrial complex. International Archives of Occupational and Environmental Health, 80(1), 40–50. doi:10.1007/s00420-006-0102-y.

    Article  CAS  Google Scholar 

  • Lopez, J. M., Callen, M. S., Murillo, R., Garcia, T., Navarro, M. V., Cruz, M. T. d. l., et al. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 99, 58–67. doi:10.1016/j.envres.2005.01.007.

    Article  CAS  Google Scholar 

  • Mugica, V., Maubert, M., Torres, M., Munoz, J., & Rico, E. (2002). Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. Journal of Aerosol Science, 33(1), 91–102. doi:10.1016/S0021-8502(01)00151-3.

    Article  CAS  Google Scholar 

  • NRC (1993). Protecting visibility in national parks and wilderness areas. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279(5712), 409–411. doi:10.1038/279409a0.

    Article  CAS  Google Scholar 

  • Oberdörster, G. (2000). Toxicology of ultrafine particles: in vivo studies. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 358(1775), 2719–2740.

    Article  Google Scholar 

  • Park, K., Park, J. Y., Kwak, J.–H., Cho, G. N., & Kim, J.–S. (2008). Seasonal and diurnal variations of ultrafine particle concentration in urban Gwangju, Korea: Observation of ultrafine particle events. Atmospheric Environment, 42(4), 788–799. doi:10.1016/j.atmosenv.2007.09.068.

    Article  CAS  Google Scholar 

  • Peters, A., Wichmann, H. E., Tuch, T., Heingrich, J., & Heyder, J. (1997). Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine, 155, 1376–1383.

    CAS  Google Scholar 

  • Pina, A. A., Villasenor, G. T., Fernandez, M. M., Kudra, A. L., & Ramos, R. L. (2000). Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmospheric Environment, 34, 4103–4112. doi:10.1016/S1352-2310(99)00526-9.

    Article  CAS  Google Scholar 

  • Senlin, L., Longyi, S., Minghong, W., Zheng, J., & Xiaohui, C. (2007). Chemical elements and their source apportionment of PM10 in Beijing urban atmosphere. Environmental Monitoring and Assessment, 133(1), 79–85. doi:10.1007/s10661-006-9561-6.

    Article  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta (England), 28, 1273–1285.

    Article  CAS  Google Scholar 

  • UK (2007). The Air Quality Standards Regulations 2007. Wales. Statutory Instruments. Environmental Protection. http://www.legislation.gov.uk/si/si2007/uksi_20070064_en_1.

  • Wang, X. L., Sato, T., Xing, B. S., Tamamura, S., & Tao, S. (2005). Source identification, size distribution and indicator screening of airborne trace metals in Kanazawa, Japan. Journal of Aerosol Science, 36(2), 197–210. doi:10.1016/j.jaerosci.2004.08.005.

    Article  CAS  Google Scholar 

  • WHO (2000). Air quality guidelines for Europe. Copenhagen: WHO Regional Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kihong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Dam, H.D. Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources. Environ Monit Assess 160, 289–300 (2010). https://doi.org/10.1007/s10661-008-0695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0695-6

Keywords

Navigation