Ahn, H., & Chon, H. (1999). Assessment of groundwater contamination using geographic information systems. Environmental Geochemistry and Health, 21, 273–289. doi:10.1023/A:1006697512090.
Article
CAS
Google Scholar
APHA, AWWA, WPCF (1976). Standard methods for the examination of water and wastewater (14th edition). New York: APHA, AWWA, WPCF.
Google Scholar
APHA, AWWA, WPCF (1985). Standard methods for the examination of water and wastewater (16th edition). Washington: APHA, AWWA, WPCF.
Google Scholar
Buttner, O., Becker, A., Kellner, S., Kuehn, S., Wendt-Potthoff, K., Zachmann, D. W., et al. (1998). Geostatistical analysis of surface sediments in an acidic mining lake. Water, Air, and Soil Pollution, 108, 297–316. doi:10.1023/A:1005145029916.
Article
CAS
Google Scholar
Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22, 239–252.
Article
Google Scholar
D’agostino, V., Greene, E. A., Passarella, G., Vurro, M. (1998). Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environmental Geology, 36(3–4), 285–295. doi:10.1007/s002540050344.
Article
Google Scholar
Ducci, D. (1999). GIS techniques for mapping groundwater contamination risk. Natural Hazards, 20, 279–294. doi:10.1023/A:1008192919933.
Article
Google Scholar
Engel, B. A., & Navulur, K. C. S. (1999). The role of geographical information systems in groundwater engineering. In J. W. Delleur (Ed.), The handbook of groundwater engineering (pp. 21, 1–16). Boca Raton: CRC.
Google Scholar
EPA (U.S. Environmental Protection Agency) (1993). Wellhead protection: a guide for small communities. Office of Research and Development Office of Water, Washington, DC., EPA/625/R-93/002, 144 p.
ESRI (Environmental Systems Research Institute) (2001). Using ArcGIS geostatistical analyst (300 p.), USA.
Fetter, C. W. (1999). Contaminant hydrogeology (p. 500). USA: Prentice Hall.
Google Scholar
Fritch, T. G., Yelderman, J. C., Dworkin, S. I., & Arnold, J. G. (2000). A predictive modeling approach to assessing the groundwater pollution susceptibility of the Paluxy Aquifer, Central Texas, using a geographic information system. Environmental Geology, 39(9), 1063–1069. doi:10.1007/s002549900078.
Article
CAS
Google Scholar
Fytianos, K., & Christophoridis, C. (2004). Nitrate, arsenic and chloride pollution of drinking water in Northern Greece: Elaboration by applying GIS. Environmental Monitoring and Assessment, 93, 55–67. doi:10.1023/B:EMAS.0000016791.73493.aa.
Article
CAS
Google Scholar
Gringarten, E., & Deutsch, C. V. (2001). Teacher’s aide variogram interpretation and modeling. Mathematical Geology, 33(4), 507–534. doi:10.1023/A:1011093014141.
Article
Google Scholar
Hudak, P. F. (1999). Chloride and nitrate distributions in the Hickory Aquifer, Central Texas, USA. Environment International, 25(4), 393–401. doi:10.1016/S0160-4120(99)00016-1.
Article
CAS
Google Scholar
Hudak, P. F. (2000). Regional trends in nitrate content of Texas groundwater. Journal of Hydrology (Amsterdam), 228(1–2), 37–47. doi:10.1016/S0022-1694(99)00206-1.
Article
CAS
Google Scholar
Hudak, P. F. (2001). Water hardness and sodium trends in Texas aquifers. Environmental Monitoring and Assessment, 68, 177–185. doi:10.1023/A:1010760413010.
Article
CAS
Google Scholar
Hudak, P. F., & Sanmanee, S. (2003). Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the woodbine aquifer of North-Central Texas. Environmental Monitoring and Assessment, 82, 311–320. doi:10.1023/A:1021946402095.
Article
CAS
Google Scholar
Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal, 91(3), 393–400.
Article
Google Scholar
Levallois, P., Thériault, M., Rouffignat, J., Tessier, S., Landry, R., Ayotte, P., et al. (1998). Groundwater contamination by nitrates associated with intensive potato culture in Québec. The Science of the Total Environment, 217, 91–101. doi:10.1016/S0048-9697(98)00191-0.
Article
CAS
Google Scholar
Lin, Y., Tan, Y., & Rouhani, S. (2001). Identifying spatial characteristics of transmissivity using simulated annealing and kriging methods. Environmental Geology, 41(1–2), 189–199. doi:10.1007/s002540100382.
Article
CAS
Google Scholar
Mcgrath, D., & Zhang, C. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18, 1629–1639. doi:10.1016/S0883-2927(03)00045-3.
Article
CAS
Google Scholar
Nas, B., & Berktay, A. (2006). Groundwater contamination by nitrates in the City of Konya, (Turkey): A GIS perspective. Journal of Environmental Management, 79, 30–37. doi:10.1016/j.jenvman.2005.05.010.
Article
CAS
Google Scholar
Poon, K., Wong, R. W., Lam, M. H., Yeung, H., & Chiu, T. K. (2000). Geostatistical modelling of the spatial distribution of sewage pollution in coastal sediments. Water Research, 32, 99–108. doi:10.1016/S0043-1354(99)00119-0.
Article
Google Scholar
Pozdnyakova, L., & Zhang, R. (1999). Geostatistical analyses of soil salinity in a large field. Precision Agriculture, 1, 153–165. doi:10.1023/A:1009947506264.
Article
Google Scholar
Sawyer, C. N., & Mccarty, P. L. (1978). Chemistry for environmental engineering (p. 532). NY: Mc-Graw Hill.
Google Scholar
Stein, M. L. (1999). Interpolation of spatial data: Some theory for kriging (p. 264). Berlin: Springer.
Google Scholar
Tranchant, B. J. S., & Vincent, A. P. (2000). Statistical interpolation of ozone measurements from satellite data (TOMS, SBUV and SAGE II) using the kriging method. Annales Geophysicae, 18, 666–678. doi:10.1007/s00585-000-0666-x.
Article
CAS
Google Scholar
TSE (1997). Drinking water Turkish standards, Turkish standards (TSE-266). Ankara.
Vinten, A. J. A., & Dunn, S. M. (2001). Assessing the effects of land use on temporal change in well water quality in a designated nitrate vulnerable zone. The Science of the Total Environment, 265, 253–268. doi: 10.1016/S0048-9697(00)00662-8.
Article
CAS
Google Scholar
Water Authority. Works Report 2000 (2001). Water authority (143 p.). Municipality of Konya City, Konya, Turkey (In Turkish).
WHO (World Health Organization) (1985). Health hazards from nitrates in drinking water. WHO, Regional Office for Europe.
WHO (World Health Organization) (2004). Guidelines for drinking water quality, third edition. Geneva: WHO.
Google Scholar
Yamamoto, J. K. (2000). An alternative measure of the reliability of ordinary kriging estimates. Mathematical Geology, 32(4), 489–509. doi:10.1023/A:1007577916868.
Article
Google Scholar
Zhu, H. C., Charlet, J. M., & Poffijn, A. (2001). Radon risk mapping in Southern Belgium: An application of geostatistical and GIS techniques. The Science of the Total Environment, 272, 203–210. doi:10.1016/S0048-9697(01)00693-3.
Article
CAS
Google Scholar
Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. P. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375–390. doi:10.1023/A:1007586507433.
Article
Google Scholar