Preliminary assessment of total dissolved trace metal concentrations in Sava River water

Abstract

This study provides the preliminary data set for total dissolved trace metal concentrations in the surface water of the Sava River in Croatia and the assessment of Sava River water quality status. The highest levels of total dissolved metals were observed for Fe, Mn, and Zn (12.6 ± 7.8 μg L − 1, 3.44 ± 3.95 μg L − 1, and 2.27 ± 1.53 μg L − 1, respectively), the intermediate concentrations for Ni, Cu, and Cr (0.59 ± 0.14 μg L − 1, 0.54 ± 0.14 μg L − 1, and 0.32 ± 0.06 μg L − 1, respectively), and the lowest levels for Co, Pb, and Cd (0.064 ± 0.022 μg L − 1, 0.055 ± 0.051 μg L − 1, and 0.011 ± 0.004 μg L − 1, respectively). The results refer to the grab water samples taken at five sites in the period from March to June, 2006. For four trace metals (Mn, Pb, Zn, and Fe), the high temporal variability within one season was observed. It can present a problem for reliable evaluation of total dissolved concentrations of these metals in the river water, if the assessment is based on the occasional grab water sampling. The comparison of results obtained in this study with previously reported data for several unpolluted rivers indicated that Sava River water reflects a certain anthropogenic impact. However, according to the levels proposed by European regulations, it still can be classified as water containing total dissolved trace metals in concentrations not significantly above the natural level.

This is a preview of subscription content, access via your institution.

References

  1. Buffle, J., Wilkinson, K. J., Tercier, M.-L., & Parthasarathy, N. (1997). In situ monitoring and speciation of trace metals in natural waters. Annali di Chimica-Rome, 87, 67–82.

    CAS  Google Scholar 

  2. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). New York: IUPAC, John Wiley and Sons Ltd.

    Google Scholar 

  3. CEC (Commission of the European Communities) (2006). Proposal for a Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy and amending Directive 2000/60/EC. No. 2006/0129 (COD).

  4. Cleven, R., Nur, Y., Krystek, P., & van den Berg, G. (2005). Monitoring metal speciation in the rivers Meuse and Rhine using DGT. Water, Air, and Soil Pollution, 165, 249–263. doi:10.1007/s11270-005-5147-0.

    Article  CAS  Google Scholar 

  5. Crane, M., Kwok, K. W. H., Wells, C., Whitehouse, P., & Lui, G. C. S. (2007). Use of field data to support European Water Framework Directive quality standards for dissolved metals. Environmental Science & Technology, 41, 5014–5021. doi:10.1021/es0629460.

    Article  CAS  Google Scholar 

  6. Dautović, J. (2006). Metal determination in natural waters using high resolution inductively coupled plasma mass spectrometry. (in Croatian). B.Sc. Thesis, Faculty of Science, University of Zagreb.

  7. Dautović, J., Roje, V., Kozar, S., Fiket, Ž., & Mikac, N. (2007). Dissolved trace metals in some rivers and lakes from the Republic of Croatia (in Croatian). In Croatian waters and European Union—challenges and potentials. In: Proceedings of 4th Croatian conference on waters, with international participation, Opatija, Croatia (pp. 115–122).

  8. Dragun, Z., Raspor, B., & Podrug, M. (2007). The influence of the season and the biotic factors on the cytosolic metal concentrations in the gills of the European chub (Leuciscus cephalus L.). Chemosphere, 69, 911–919. doi:10.1016/j.chemosphere.2007.05.069.

    Article  CAS  Google Scholar 

  9. Dragun, Z., Raspor, B., & Roje, V. (2008). The labile metal concentrations in Sava River water assessed by diffusive gradients in thin films. Chemical Speciation and Bioavailability, 20, 33–46. doi:10.3184/095422908X299164.

    Article  CAS  Google Scholar 

  10. Elbaz-Poulichet, F., Guan, D. M., & Martin, J.-M. (1991). Trace metal behaviour in a highly stratified Mediterranean estuary: The Krka (Yugoslavia). Marine Chemistry, 32, 211–224. doi:10.1016/0304-4203(91)90039-Y.

    Article  CAS  Google Scholar 

  11. Elbaz-Poulichet, F., Seidel, J.-L., Casiot, C., & Tusseau-Vuillemin, M.-H. (2006). Short-term variability of dissolved trace element concentrations in the Marne and Seine Rivers near Paris. The Science of the Total Environment, 367, 278–287. doi:10.1016/j.scitotenv.2005.11.009.

    Article  CAS  Google Scholar 

  12. EPCEU (European Parliament and the Council of the European Union) (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (EU WFD). Official Journal of the European Communities.

  13. Gaillardet, J., Viers, J., & Dupré, B. (2004). Trace elements in river waters. In H.D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry: Surface and ground water, weathering, and soils (vol. 5, pp. 225–272). Amsterdam: Elsevier.

    Google Scholar 

  14. Harrison, R. M. (1995). Understanding our environment: An introduction to environmental chemistry and pollution. London: The Royal Society of Chemistry.

    Google Scholar 

  15. International Network for Acid Prevention (INAP) (2002). Diffusive gradients in thin-films (DGT): A technique for determining bioavailable metal concentrations. http://www.inap.com.au.

  16. Jones, C. A., Nimick, D. A. & McCleskey, R. B. (2004). Relative effect of temperature and pH on diel cycling of dissolved trace elements in Prickly Pear Creek, Montana. Water, Air, and Soil Pollution, 153(1–4), 95–113.

    Article  CAS  Google Scholar 

  17. Kapetanović, D., Dragun, Z., Valić, D., Teskeredžić, Z., & Teskeredžić, E. (2008). Enumeration of heterotrophs in the river water with spread plate method: Comparison of Yeast extract agar and R2A agar. Fresenius Environmental Bulletin, submitted.

  18. Kļaviņš, M., Briede, A., Rodinov, V., Kokorīte, I., Parele, E., & Kļaviņa, I. (2000). Heavy metals in rivers of Latvia. The Science of the Total Environment, 262, 175–183. doi:10.1016/S0048-9697(00)00597-0.

  19. Koukal, B., Dominik, J., Vignati, D., Arpagaus, P., Santiago, S., Ouddane, B., et al. (2004). Assessment of water quality and toxicity of polluted Rivers Fez and Sebou in the region of Fez (Morocco). Environmental Pollution, 131, 163–172. doi:10.1016/j.envpol.2004.01.014.

    Article  CAS  Google Scholar 

  20. Luoma, S. N. (1989). Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia, 176/177, 379–396. doi:10.1007/BF00026572.

    Article  Google Scholar 

  21. Martin, J. M., Guan, D. M., Elbaz-Poulichet, F., Thomas, A. J., & Gordeev, V. V. (1993). Preliminary assessment of the distributions of some trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) in a pristine aquatic environment: The Lena River estuary (Russia). Marine Chemistry, 43, 185–199. doi:10.1016/0304-4203(93)90224-C.

    Article  CAS  Google Scholar 

  22. Mikac, N., & Branica, M. (1994). Input of ionic alkyllead compounds to surface waters. The Science of the Total Environment, 154, 39–46. doi:10.1016/0048-9697(94)90612-2.

    Article  CAS  Google Scholar 

  23. Neal, C., Williams, R. J., Neal, M., Bhardwaj, L. C., Wickham, H., Harrow, M., et al. (2000). The water quality of the River Thames at a rural site downstream of Oxford. The Science of the Total Environment, 251–252, 441–457. doi:10.1016/S0048-9697(00)00398-3.

    Article  Google Scholar 

  24. Neal, C., Neal, M., Hill, L., & Wickham, H. (2006). The water quality of the River Thame in the Thames Basin of south/south-eastern England. The Science of the Total Environment, 360, 254–271. doi:10.1016/j.scitotenv.2005.08.039.

    Article  CAS  Google Scholar 

  25. Nimick, D. A., Gammons, C. H., Cleasby, T. E., Madison, J. P., Skaar, D., & Brick, C. M. (2003). Diel variations in dissolved metal concentrations in streams: Occurrence and possible causes. Water Resources Research, 39, 1247. doi:10.1029/2002WR001571.

    Article  Google Scholar 

  26. Pakhomova, S. V., Hall, P. O. J., Kononets, M. Y., Rozanov, A. G., Tengberg, A., & Vershinin, A. V. (2007). Fluxes of iron and manganese across the sediment–water interface under various redox conditions. Marine Chemistry, 107, 319–331. doi:10.1016/j.marchem.2007.06.001.

    Article  CAS  Google Scholar 

  27. Pawlisz, A. V., Kent, R. A., Schneider, U. A., & Jefferson, C. (1997). Canadian water quality guidelines for chromium. Environmental Toxicology and Water Quality, 12, 123–183. doi:10.1002/(SICI)1098-2256(1997)12:2<123::AID-TOX4>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  28. Robson, A. J., & Neal, C. (1997). Regional water quality of the river Tweed. The Science of the Total Environment, 194–195, 173–192. doi:10.1016/S0048-9697(96)05363-6.

    Google Scholar 

  29. Sherrell, R. M., & Ross, J. M. (1999). Temporal variability of trace metals in New Jersey Pinelands streams: Relationship to discharge and pH. Geochimica et Cosmochimica Acta, 63, 3321–3336. doi:10.1016/S0016-7037(99)00254-9.

    Article  CAS  Google Scholar 

  30. Shiller, A. M. (1997). Dissolved trace elements in the Mississippi River: Seasonal, interannual, and decadal variability. Geochimica et Cosmochimica Acta, 61, 4321–4330. doi:10.1016/S0016-7037(97)00245-7.

    Article  CAS  Google Scholar 

  31. Stumm, W., & Morgan, J. J. (1981). Kinetics of redox processes. In W. Stumm & J. J. Morgan (Eds.), Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters (pp. 463–475). New York: John Wiley & Sons.

    Google Scholar 

  32. Tebo, B. M. (1991). Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Research, 38(suppl. 2), S883–S905.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zrinka Dragun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dragun, Z., Roje, V., Mikac, N. et al. Preliminary assessment of total dissolved trace metal concentrations in Sava River water. Environ Monit Assess 159, 99 (2009). https://doi.org/10.1007/s10661-008-0615-9

Download citation

Keywords

  • Metals
  • Dissolved fraction
  • Sava River
  • Water
  • Regulations