Skip to main content

Advertisement

Log in

Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fifty-seven typical surface soils and 108 deeper soils were collected from five former industrial sites in Beijing and concentrations of total Hg (ΣHg) as well as pH, total carbon (TC), total nitrogen (TN), total sulfur, and dissolved organic carbon concentrations determined. The mean concentration of ΣHg in surface soils was significantly greater than background concentrations in the vicinity of Beijing. Forty-eight percent of the samples exceeded the “critical” concentration of 1.0 mg Hg/kg, dry weight in soils, which has been established by the Chinese government. At depths of 0–80 cm in the soil, profile concentrations of ΣHg also exceeded the background value. There were significant correlations between concentrations of ΣHg, TC, and TN in the industrial soils. The greater concentration of ΣHg in most soils could have been due in part to combustion of coal and leakage from industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agamuthu, P., & Mahalingam, R. (2005). Mercury emissions: Is there a global problem? Waste Management Research, 23, 485–486.

    Article  CAS  Google Scholar 

  • CNEMC (China National Environmental Monitoring Center) (1990). The background concentrations of soil elements in China. Beijing: China Environmental Science Press (in Chinese).

    Google Scholar 

  • Feng, X., Tang, S., Shang, L., Yan, H., Sommar, J., & Lindqvist, O. (2003). Total gaseous mercury in the atmosphere of Guiyang, PR China. Atmospheric Environment, 304, 61–72.

    CAS  Google Scholar 

  • Gao, X. L. (1987). The distribution of mercury pollution in air in Beijing urban areas. Environmental Science, 8, 33–36 (in Chinese).

    CAS  Google Scholar 

  • Gao, J. J., Zhang, L. P., Huang, S. B., Ma, M., & Wang, Z. (2004). Preliminary health risk assessment of heavy metals in drinking waters in Beijing. Environmental Science, 25, 47–50 (in Chinese).

    Google Scholar 

  • Gaudet, C., Lingard, S., Cureton, P., Keenleyside, K., Smithe, S., & Raju, G. (1995). Canadian environmental quality guidelines for mercury. Water Air and Soil Pollution, 80, 1149–1159.

    Article  CAS  Google Scholar 

  • Gobat, J. M., Aragno, M., & Matthey, W. (1998). The living soil. Bases of pedology. In Biology of soils. Lausanne: Polytechnic and Romandes University Presses (in French).

    Google Scholar 

  • Hollis, J. M. (1991). The classification of soils in urban areas. Oxford: Blackwell.

    Google Scholar 

  • Hylander, L. D., & Goodsite, M. E. (2006). Environmental costs of mercury pollution. Science of the Total Environment, 368, 352–370.

    Article  CAS  Google Scholar 

  • Jacobsen, O. H., Moldrup, P., de Jonge, H., & de Jonge, L. W. (1998). Mobilization and transport of natural colloids in a macroporous soil. Physics and Chemistry of the Earth, 23, 159–162.

    Article  Google Scholar 

  • Jiang, J. K., Hao, J. M., Wu, H., Streets, D. G., Duan, L., & Tiao, H. Z. (2005). Development of mercury emission inventory from coal combustion in china. Environmental Science, 26, 34–39 (in Chinese).

    CAS  Google Scholar 

  • Landa, E. R. (1978). The retention of metallic mercury vapor by soils. Geochima et Cosmochimica Acta, 42, 1407–1411.

    Article  CAS  Google Scholar 

  • Landis, M., Keeler, G., Al-Wali, K., & Stevens, R. (2004). Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmospheric Environment, 38, 613–622.

    Article  CAS  Google Scholar 

  • Lechler, P. J., Miller, J. R., Hsu, L. C., & Desilets, M. O. (1997). Mercury mobility at the Carson River Superfund Site, east-central Nevada, USA: Interpretation of mercury speciation data in mill tailings, soils, and sediments. Journal of Geochemical Exploration, 58, 259–267.

    Article  CAS  Google Scholar 

  • Li, C. L. (1992). The reason of high mercury concentration in Beijing soil. Environmental Monitoring in China, 8, 78–80 (in Chinese).

    Google Scholar 

  • Li, X. X., Lu, A. X., Wang, J. H., Ma, Z. H., & Zhao, C. J. (2006). Analysis and assessment of soil environmental quality of some farmlands in Beijing. Transaction of Chinese Society of Agricultural Engineering, 22, 60–63 (in Chinese).

    CAS  Google Scholar 

  • Linde, M., Bengtsson, H., & Öborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air and Soil Pollution Focus, 1, 83–101.

    Article  CAS  Google Scholar 

  • Linde, M., Öborn, I., & Gustafsson, J. P. (2007). Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water Air and Soil Pollution, 183, 69–83.

    Article  CAS  Google Scholar 

  • Liu, J. H., Wang, W. H., & Peng, A. (1997). Study on mercury species of Beijing surface soils and sediments. Environmental Chemistry, 16, 172–177 (in Chinese).

    CAS  Google Scholar 

  • Liu, J. H., Wang, W. H., & Peng, A. (1998). Pollution and sources of mercury in top soil in two district of Beijing. Acta Scientiae Circumstantiae, 18, 331–336 (in Chinese).

    CAS  Google Scholar 

  • Liu, S., Nadim, F., Perkins, C., Carley, R. J., Hoag, G. E., Lin, Y., et al. (2002). Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48, 97–107.

    Article  CAS  Google Scholar 

  • Mai, B. X., Qi, S. H., Zeng, E. Y., Yang, Q. S., Zhang, G., Fu, J. M., et al. (2003). Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis. Environmental Science and Technology, 37, 4855–4863.

    Article  CAS  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biochemical cycling of elementary mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.

    Article  CAS  Google Scholar 

  • Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in natural waters. New York: Springer.

    Google Scholar 

  • Nater, E. A., & Grigal, D. F. (1992). Regional trends in mercury distribution across the Great Lakes States, North Central USA. Nature, 258, 139–141.

    Article  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47–49.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., & Pacyna, J. M. (2001). Global emissions of mercury from anthropogenic sources in 1995. Water Air and Soil Pollution, 137, 149–165.

    Article  Google Scholar 

  • Provoost, J., Cornelis, C., & Swartjes, F. (2006). Comparison of soil clean-up standards for trace elements between countries: Why do they differ? Journal of Soils and Sediments, 6, 173–181.

    Article  CAS  Google Scholar 

  • Reddy, M. M., & Aiken, G. R. (2001). Fluvic acid sulfide ion competition for mercury ion binding in the Florida Everglades. Water Air and Soil Pollution, 132, 89–104.

    Article  CAS  Google Scholar 

  • Sas-Nowosielska, A., Galimska-Stypa, R., Kucharski, R., Zielonka, U., Małkowski, E., & Gray, L. (2008). Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environmental Monitoring Assessment, 137, 101–109.

    Article  CAS  Google Scholar 

  • Schlűter, K. (2000). Review: Evaporation of mercury from soils, an integration and synthesis of current knowledge. Environmental Geology, 39, 249–271.

    Article  Google Scholar 

  • Semu, E., & Singh, B. R. (1987). Absorption of mercury compounds by tropical soils. Water Air and Soil Pollution, 32, 1–10.

    CAS  Google Scholar 

  • Semu, E., Singh, B. R., & Selmer-Olsen, A. R. (1987). Adsorption of mercury compounds by tropical soils: II. Effects of soil: Solution ration, ionic strength, pH and organic matter. Water Air and Soil Pollution, 32, 1–10.

    CAS  Google Scholar 

  • Shuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption process—A review of the literature. Water Air and Soil Pollution, 56, 667–680.

    Article  Google Scholar 

  • Sznopek, J. L., & Goonan, T. G. (2000). The materials flow of mercury in the economies of the United States and the world. US Geological Survey Circular 1197. Available from http://greenwood.cr.usgs.gov/pub/circulars/c1197/.

  • Tan, M. Z., Chen, J., Zhang, X. L., Chen, J., & Yan, W. (2005). Pilot study on heavy metal pollution in soils of peri-urban zone of Beijing. Chinese Journal of Soil Science, 36, 96–97 (in Chinese).

    CAS  Google Scholar 

  • Tayban, N., & Preston, M. R. (2005). Atmospheric vapour phase and particulate phase mercury in a coastal desert climate. Journal of Environmental Monitoring, 7, 997–982.

    Google Scholar 

  • Trost, P. B., & Bisque, R. E. (1972). Distribution of mercury in residual soils. In R. Hartung, B. D. Dinman (Ed.), Environmental mercury contamination (pp. 178–196). Ann Arbor, Michigan: Science Publishers.

    Google Scholar 

  • Wang, Z. W., Zhang, X. S., Zhang, Y., & Quan, J. N. (2004). Mercury of atmospheric particle PM2.5, PM10 and snow in Beijing. Environmental Chemistry, 23, 669–673 (in Chinese).

    Google Scholar 

  • Wright, A. L., Provin, T. L., Hons, F. M., Zuberer, D. A., & White, R. H. (2005). Dissolved organic C in compost-amended bermudagrass turf. HortScience, 40, 830–835.

    Google Scholar 

  • Wu, Y. Y., & Zhou, Q. X. (1991). Interim environmental guidelines for cadmium and mercury in soils of China. Water Air and Soil Pollution, 57–58, 733–743.

    Article  Google Scholar 

  • Wu, S. H., Zhao, S. Z., & Liu, X. Y. (1991). Research on the background values of six kinds of trace element in human hair of Beijingese in the southeastern suburbs. Journal of Beijing Polytechnic University, 17, 86–90 (in Chinese).

    CAS  Google Scholar 

  • Zhang, X. M., Luo, K. L., Sun, X. Z., Tan, J. A., & Lu, Y. L. (2006). Mercury in the topsoil and dust of Beijing City. Science of the Total Environment, 368, 713–722.

    Article  CAS  Google Scholar 

  • Zhu, G. Z. (2001). Pollution of heavy metals on soils in east–south area of Beijing and its remediation. Journal of Agro-environmental Science, 20, 164–166, 182 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Lu, Y., Wang, B. et al. Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environ Monit Assess 158, 507–517 (2009). https://doi.org/10.1007/s10661-008-0600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0600-3

Keywords

Navigation