Skip to main content
Log in

Availability and mobility of heavy metal fractions related to the characteristics of the coastal soils developed from alluvial deposits

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The availability of the five chemical fractions, i.e., exchangeable (F1), carbonate-bound (F2), Fe/Mn oxide-combined (F3), organic matter-complexed (F4), residual (F5), of three heavy metals (Cu, Zn, and Cd), has been investigated by way of a sequential extraction technique based on the characteristics of the coastal soils developed from alluvial deposits, in order to analyze the relationship of the formation and development of coastal soils. The results showed that F1 and F5 of Cu, Zn, and Cd accounted dominantly for 9.11%, 2.74%, and 20.37%, and for 39.49%, 45.18%, and 32.43% of total heavy metal contents, respectively, indicating the order of availability and mobility: Cd > Cu > Zn. F2, F3, and F4 of HMs also featured prominently in the behaviors of heavy metals. Random measurement errors from both sampling and analysis were demonstrated by SAX to be well within the control target of 20% and, therefore, of no impediment to the geochemical interpretation of the data. Significant positive correlation was found between certain fractions of heavy metals and some soil properties. Some negative correlation was also found. The findings were helpful to the soil remediation, fertility adjustment, and plant cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Heavy metal in soils (pp. 1–368). London: Blackie.

    Google Scholar 

  • Alvarez, E. A., Mochon, M. C., Sanchez, J. C. J., & Rodriguez, M. T. (2002). Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere, 47, 765–775.

    Article  CAS  Google Scholar 

  • Andersson, A. (1975). Relative efficiency of nine different soil extractants. Swedish Journal of Agricultural Research, 5, 125–135.

    CAS  Google Scholar 

  • Ashworth, D. J., & Alloway, B. J. (2004). Soil mobility of sewage sludge derived dissolved organic matter, copper, nickel and zinc. Environmental Pollution, 127, 137–144.

    Article  CAS  Google Scholar 

  • Berti, W. R., & Jacobs, L. W. (1996). Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications. Journal of Environmental Quality, 25, 1025–1032.

    CAS  Google Scholar 

  • Calace, N., De Paolis, F., D’Orazio, D., & Petronio, B. M. (1997). Metal speciation in Arno River sediments. Annali di chimica, 87, 743–751.

    CAS  Google Scholar 

  • Chen, Y. X., Wang, K. X., Lin, Q., & Yang, Y. (2001). Effects of heavy metals on ammonification, nitrification and denitrification in maize rhizosphere. Pedosphere, 11, 115–122.

    CAS  Google Scholar 

  • Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality, 25, 69–79.

    Article  CAS  Google Scholar 

  • Clemente, R., Escolar, A., & Bernal, M. P. (2006). Heavy metals fractionation and organic matter mineralization in contaminated calcareous soil amended with organic materials. Bioresource Technology, 97, 1894–1901.

    Article  CAS  Google Scholar 

  • Feng, G. Q. (2001). Chinese agricultural corporation: Shanghai. Beijing: Chinese Agriculture Press.

    Google Scholar 

  • Fuentes, A., Llorens, M., Saez, J., Soler, A., Aguilar, M. I., Ortuno, J. F., et al. (2004). Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere, 54, 1039–1047.

    Article  CAS  Google Scholar 

  • Gu, P. Q., & Wu, Y. P. (2000). Analysis of climatic variation in Fengxian county during 40 years (from 1959 to 1999) and its rational development and utilization in agriculture. Acta Agriculturae Shanghai, 16, 13–18.

    Google Scholar 

  • Gupta, A. K., & Sarita, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64, 161–173.

    Article  CAS  Google Scholar 

  • He, M., Katsutoshi, S., Wang, G. Q., Chen, Z. H., Shu, Y., & Xu, J. J. (2003). Physico-chemical characteristics of the soils developed from alluvial deposits on Chongming Island in Shanghai, China. Soil Science and Plant Nutrition, 49, 223–229.

    CAS  Google Scholar 

  • Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorus. Journal of Environmental Quality, 30, 1214–1221.

    CAS  Google Scholar 

  • Hou, C. Q. (1992). Soils in Shanghai (pp. 1–332). Shanghai: Science and Technology Press.

    Google Scholar 

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126, 225–233.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (pp. 1–335). Boca Raton: CRC.

    Google Scholar 

  • Li, J. L., He, M., Sun, S. Q., Han, W., Zhang, Y. C., Mao, X. H., et al. (2008). Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits. Environmental Monitoring and Assessment. doi:10.1007/s10661-008-0465-5.

  • Li, R. Y., Yang, H., Zhou, Z. G., Lu, J. J., Shao, X. H., & Jin, F. (2007). Fractionation of heavy metals in sediments from Dianchi Lake, China. Pedosphere, 17, 265–272.

    Article  CAS  Google Scholar 

  • Liu, G. S. (1996). Soil physico-chemical analysis and description of soil profiles (pp. 1–26). Beijing: Chinese Standard Press.

    Google Scholar 

  • Lottermoser, B. G. (1997). Natural enrichment of top soils with chromium and other heavy metals in Port Macquire, New South Wales, Australia. Australian Journal of Soil Research, 35, 1165–1176.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    CAS  Google Scholar 

  • Ma, X. R., & Su, D. M. (2000). Manual of drugs and microbes (pp. 70–74). Beijing: Science Press.

    Google Scholar 

  • Markus, J. A., & Mcbrathey, A. B. (1996). An urban soil study: Heavy metals in Globe. Australian Journal of Soil Research, 34, 453–465.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil, 232, 207–214.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Kanjanapa, K., Navasumrit, P., Gooneratne, S. R., & Ruchirawat, M. (2004). Cadmium in the water and sediments of the Chao Phraya River and associated waterways, Bangkok, Thailand. Water, Air and Soil Pollution, 154, 385–398.

    Article  CAS  Google Scholar 

  • Mckeague, J. A., & Day, J. H. (1966). Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes. Canadian Journal of Soil Science, 46, 13–22.

    Article  CAS  Google Scholar 

  • Norrström, A. C., & Jacks, G. (1998). Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts. Science of the Total Environment, 218, 161–174.

    Article  Google Scholar 

  • Obrador, A., Mingot, J. I., Alvarez, J. M., & Rico, M. I. (1997). Metal mobility and potential bioavailability in organic matter-rich soil sludge mixtures: Effect of soil type and contact time. Science of the Total Environment, 206, 117–126.

    CAS  Google Scholar 

  • Ramsey, M. H. (1993). Sampling and analytical quality control (SAX) for improved error estimation in the measurement of Pb in the environment using robust analysis of variance. Applied Geochemistry, 2, 149–153.

    Article  CAS  Google Scholar 

  • Richard, J. B., & Gregory, C. A. (1985). Applied regression analysis and experimental design. New York: Marcel Dekker.

    Google Scholar 

  • Samuel, B. G., Neil, J. S., & Theresa, M. (2000). Using SPSS for Windows: Analyzing and understanding data. Upper Saddle River: Prentice.

    Google Scholar 

  • Sanchez, G., Moyano, A., & Munez, C. (1999). Forms of cadmium, lead and zinc in polluted mining soils and uptake by plants (Soria Province, Spain). Communications in Soil Science and Plant Analysis, 30, 1385–1402.

    Article  CAS  Google Scholar 

  • Shi, W., Bischoff, M., Turco, R., & Konopka, A. (2002). Long-term effects of chromium and lead upon the activity of soil microbial communities. Applied Soil Ecology, 21, 169–177.

    Article  Google Scholar 

  • Shrivastava, S. K., & Banerjee, D. K. (2004). Speciation of metals in sewage sludge and sludge-amended soils. Water, Air and Soil Pollution, 152, 219–232.

    Article  CAS  Google Scholar 

  • Sims, J. T., & Kline, J. S. (1991). Chemical fractionation and plant uptake of heavy metals in soil amended with co-compost sewage sludge. Journal of Environmental Quality, 20, 387–395.

    CAS  Google Scholar 

  • Su, D. C., & Wong, J. W. C. (2004). Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly-ash stabilized sewage sludge. Environment International, 29, 895–900.

    Article  CAS  Google Scholar 

  • Sun, B., Sun, H., & Zhang, T. L. (2004). Bio-environmental effects and index of remediation of multi-heavy metals polluted red soils. Environmental Science, 25, 104–110.

    Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59, 225–238.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tu, C., Zheng, C. R., & Chen, H. M. (2000). Effects of heavy metal pollution on potassium behavior in Typic Udic Ferrisol. Pedosphere, 10, 21–30.

    Google Scholar 

  • Udom, B. E., Mbagwu, J. S. C., Adesodun, J. K., & Agbim, N. N. (2004). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International, 30, 467–470.

    Article  CAS  Google Scholar 

  • Wu, Q. L., Yang, Y. A., & Xie, Z. M. (2000). Microelement & biological health (pp. 208–281). Guizhou: Science and Technology Press.

    Google Scholar 

  • Xi, C. P. (1998). The Soils of China (pp. 1–1246). Beijing: Chinese Agriculture Press.

    Google Scholar 

  • Zhang, Q. L., Shi, X. Z., Huang, B., Yu, D. S., Wang, H. J., Blombaeck, K., et al. (2005). Characteristics of spatial variability of soil available lead, zinc, copper and cadmium in a vegetable base in the suburbs of Nanjing. Soils, 37, 41–47.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., He, M., Han, W. et al. Availability and mobility of heavy metal fractions related to the characteristics of the coastal soils developed from alluvial deposits. Environ Monit Assess 158, 459–469 (2009). https://doi.org/10.1007/s10661-008-0596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0596-8

Keywords

Navigation