Skip to main content
Log in

Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of heavy metals (Cu, Cr, Fe, Pb, Zn, Hg, Ni, and Cd) and macronutrients (Mn) were measured in industrial effluents, water, bottom sediments, and wetland plants from a reservoir, Govind Ballabh (G.B.) Pant Sagar, in Singrauli Industrial region, India. The discharge point of a thermal power plant, a coal mine, and chlor-alkali effluent into the G.B. Pant Sagar were selected as sampling sites with one reference site in order to compare the findings. The concentrations of heavy metals in filtered water, sieved sediment samples (0.4–63 μm), and wetland plants were determined with particle-induced X-ray emission. The collected plants were Aponogeton natans, L. Engl. & Krause, Cyperus rotundus, L., Hydrilla verticillata, (L.f.) Royle, Ipomoea aquatica, Forssk., Marsilea quadrifolia, L., Potamogeton pectinatus, L., Eichhornia crassipes, (Mart.) Solms Monogr., Lemna minor, L., Spirodela polyrhiza (L.) Schleid. Linnaea, Azolla pinnata, R.Br., Vallisneria spiralis, L., and Polygonum amphibium, L. In general, metal concentration showed a significant positive correlation between industrial effluent, lake water, and lake sediment (p < 0.01). Likewise, significant positive correlation was recorded with metals concentration in plants and lake ambient, which further indicated the potential of aforesaid set of wetland macrophytes for pollution monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, P. H., & Camardese, M. B. (1993). Effects of acidification on metal accumulation by aquatic plants and invertebrates: I. Constructed wetlands. Environmental Toxicology and Chemistry, 12, 959–967. doi: 10.1897/1552-8618(1993)12[959:EOAOMA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Ali, M. B., Tripathi, R. D., Rai, U. N., Pal, A., & Singh, S. P. (1999). Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): Role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere, 39(12), 2171–2182. doi:10.1016/S0045-6535(99)00096-X.

    Article  CAS  Google Scholar 

  • APHA (2000). Standard methods for the examination of water and wastewater, 10th edn. Washington, DC: American Public Health Association.

    Google Scholar 

  • Bassi, R., & Sharma, S. S. (1993). Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Annals of Botany, 72, 151–154. doi:10.1006/anbo.1993.1093.

    Article  CAS  Google Scholar 

  • Bureau of Indian Standards (1983). General standards for discharge of environment pollutants effluents. IS: 10500-1983. http://hppcb.nic.in/standard.htm.

  • Caines, L. A., Watt, A. W., & Wells, D. E. (1985). The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environmental Pollution, B10, 1–18.

    Google Scholar 

  • Carbiener, R., Tremolieres, M., Mercier, J. L., & Ortscheit, A. (1990). Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio, 86, 71–88. doi:10.1007/BF00045135.

    Article  Google Scholar 

  • Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from south east Queensland, Australia. Chemosphere, 48, 653–663. doi:10.1016/S0045-6535(02)00164-9.

    Article  CAS  Google Scholar 

  • CPCB (Central Pollution Control Board) (1998). Permissible limit for the discharge of industrial effluents (inland water surface), New Delhi.

  • Crowder, A. (1991). Acidification, metals and macrophytes. Environmental Pollution, 71(2–4), 171–203. doi:10.1016/0269-7491(91)90032-R.

    Article  CAS  Google Scholar 

  • Cymerman, A. S., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. The Science of the Total Environment, 281, 87–98. doi:10.1016/S0048-9697(01)00838-5.

    Article  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China. Environmental Pollution, 132, 29–40. doi:10.1016/j.envpol.2004.03.030.

    Article  CAS  Google Scholar 

  • Denisova, A. I., Timchenko, V. M., & Nakhshyna Ye, P. (1989). Hydrology and hydrochemistry of the Dnieper and its reservoirs. Kiev: Naukova Dumka Press (in Russian).

    Google Scholar 

  • Dirilgen, N., & Inel, Y. (1994). Effects of zinc and copper on growth and metal accumulation in Duckweed, Lemna minor. Bulletin of Environmental Contamination and Toxicology, 53, 442–449. doi:10.1007/BF00197238.

    Article  CAS  Google Scholar 

  • Gupta, M., & Chandra, P. (1998). Bioaccumulation and toxicity of mercury in rooted submerged macrophyte Vallisneria spiralis. Environmental Pollution, 103, 327–332. doi:10.1016/S0269-7491(98)00102-X.

    Article  CAS  Google Scholar 

  • Gurzau, E. S., Neagu, C., & Gurzau, A. E. (2003). Essential metals—case study on iron. Ecotoxicology and Environmental Safety, 56, 190–200. doi:10.1016/S0147-6513(03)00062-9.

    Article  CAS  Google Scholar 

  • Huebert, D. B., & Shay, J. M. (1993). The response of Lemna trisulca L. to cadmium. Environmental Pollution, 80, 247–253. doi:10.1016/0269-7491(93)90045-P.

    Article  CAS  Google Scholar 

  • Jackson, L. J. (1998). Paradigms of metal accumulation in rooted aquatic vascular plants. The Science of the Total Environment, 219, 223–231. doi:10.1016/S0048-9697(98)00231-9.

    Article  CAS  Google Scholar 

  • Jain, S. K., Vasudevan, P., & Jha, N. K. (1989). Removal of some heavy metals from polluted waters by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28, 115–126.

    Google Scholar 

  • Jain, S. K., Vasudevan, P., & Jha, N. K. (1990). Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research, 24(2), 177–183. doi:10.1016/0043-1354(90)90100-K.

    Article  CAS  Google Scholar 

  • Jana, S. (1988). Accumulation of mercury and chromium by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water, Air, and Soil Pollution, 38, 105–109.

    CAS  Google Scholar 

  • Jayaweera, M. W., Dilhani, J. A. T., Kularatne, R. K. A., & Wijeykoon, S. L. J. (2007). Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations. Journal of Environmental Science and Health Part A, 42, 925–932. doi:10.1080/10934520701369842.

    Article  CAS  Google Scholar 

  • Jayaweeraa, M. W., Kasturiarachchia, J. C., Kularatnea, R. K. A., & Wijeyekoon, S. L. J. (2008). Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management, 87, 450–460. doi:10.1016/j.jenvman.2007.01.013.

    Article  CAS  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhary, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207. doi:10.1016/S0045-6535(99)00412-9.

    Article  CAS  Google Scholar 

  • Lenka, M., Panda, K. K., & Panda, B. B. (1990). Studies on the ability of water hyacinth (Eichhornia crassipes) to bioconcentrate and biomonitor aquatic mercury. Environmental Pollution, 66, 89–99. doi:10.1016/0269-7491(90)90201-M.

    Article  CAS  Google Scholar 

  • Lenka, M., Panda, K. K., & Panda, B. B. (1992). Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant IV. Bioconcentration of mercury in in-situ aquatic and terrestrial plant at Ganjam, India. Archives of Environmental Contamination and Toxicology, 22, 195–202. doi:10.1007/BF00213285.

    Article  CAS  Google Scholar 

  • Linnik, P. M., & Zubenko, I. B. (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes and Reservoirs: Research and Management, 5, 11–21. doi:10.1046/j.1440-1770.2000.00094.x.

    Article  Google Scholar 

  • Linnik, P. N., Zhuravleva, L. A., Samoilenko, V. N., & NabivanetsYu, B. (1993). Influence of exploitation regime on quality of water in the Dnieper reservoirs and mouth zone of the Dnieper River. Gidrobiologicheskiy Zhurnal, 29(1), 86–99 (in Russian).

    Google Scholar 

  • Low, K. S., Lee, C. K., & Tai, C. H. (1994). Biosorption of copper by water hyacinth roots. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 29(1), 171–188.

    Google Scholar 

  • Lytle, C. M., Zayed, A., Terry, N., & Lytle, F. W. (1996). Phyto-conversion of Cr (VI) to Cr (III) by water hyacinth: A case for phytoremediation. Abstracts of the Annual Combined Meeting of the Ecological Society of America on Ecologists/Biologists as Problem Solvers, Providence, RI.

  • Mehrotra, R., & Aowal, A. F. S. A. (1982). Water hyacinth: An appropriate solution to water pollution problems. Journal of the Institute Engineers, 62, 43–46.

    Google Scholar 

  • Mireles, A., Solís, C., Andrade, E., Lagunas-Solar, M., Piña, C., & Flocchini, R. G. (2004). Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 1(219–220), 187–190. doi:10.1016/j.nimb.2004.01.051.

    Article  CAS  Google Scholar 

  • Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57, 997–1005. doi:10.1016/j.chemosphere.2004.07.024.

    Article  CAS  Google Scholar 

  • Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth. Bulletin of Environmental Contamination and Toxicology, 30, 170–177. doi:10.1007/BF01610117.

    Article  CAS  Google Scholar 

  • Muramoto, S., Oki, Y., Nishizaki, H., & Aoyama, I. (1989). Variation in some element contents of water hyacinth due to cadmium or nickel treatment with or without anionic surface active agents. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, 24, 925–934.

    Article  Google Scholar 

  • Murozono, K., Ishii, K., Yamazaki, H., Matsuyama, S., & Iwasaki, S. (1999). PIXE spectrum analysis taking into account bremsstrahlung spectra. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 150, 76–82. doi:10.1016/S0168-583X(98)00918-5.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emission of trace metals to the atmosphere. Nature, 279, 409–411. doi:10.1038/279409a0.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metal pollution. Science, 272, 273–274. doi:10.1126/science.272.5259.223.

    Article  Google Scholar 

  • Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121, 1–63.

    CAS  Google Scholar 

  • Qian, J. H., Zayed, A., Zhu, Y. L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28, 1448–1455.

    CAS  Google Scholar 

  • Rai, P. K. (2007a). Phytoremediation of Pb and Ni from industrial effluents using Lemna minor: An eco-sustainable approach. Bulletin of Biosciences. 5(1), 67–73.

    Google Scholar 

  • Rai, P. K. (2007b). Wastewater management through biomass of Azolla pinnata: An eco-sustainable approach. Ambio, 36(5), 426–428. doi:10.1579/0044-7447(2007)36[426:WMTBOA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2008a). Heavy-metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An eco-sustainable approach. International Journal of Phytoremediation, 10(2), 133–160. doi:10.1080/15226510801913918.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2008b). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology (in press).

  • Rai, P. K. (2008c). Mercury pollution from chlor-alkali industry in a tropical lake and its bio-magnification in aquatic biota: Link between chemical pollution, biomarkers and human health concern. Human and Ecological Risk Assessment: An International Journal BHER #349636, 14(6); 14, 1–12. doi:10.1080/10807030802494683.

  • Rai, P. K. (2008d). Technical note: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10(5), 430–439. doi:10.1080/15226510802100606.

    Article  CAS  Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2007). Heavy metals removal using nuisance blue green alga Microcystis in continuous culture experiment. Environmental Sciences, 4(1), 53–59. doi:10.1080/15693430601164956.

    Article  Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2008a). Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-007-0140-2.

  • Rai, P. K., & Tripathi, B. D. (2008b). Heavy metals in industrial wastewater, soil and vegetables in Lohta village, India. Toxicological and Environmental Chemistry, 90(2), 247–257. doi:10.1080/02772240701458584.

    Article  CAS  Google Scholar 

  • Rai, P. K., Sharma, A. P., & Tripathi, B. D. (2007). Urban environment status in Singrauli Industrial region and its eco-sustainable management: A case study on heavy metal pollution. In L. Vyas (Ed.), Urban planning and environment, strategies and challenges (pp. 213–217). New Delhi: McMillan Advanced Research Series.

    Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 5, 5–12. doi:10.1016/0925-8574(95)00011-7.

    Article  Google Scholar 

  • Rai, U. N., Tripathi, R. D., Vajpayee, P., Vidyanath, J., & Ali, M. B. (2002). Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere, 46, 267–272. doi:10.1016/S0045-6535(01)00087-X.

    Article  CAS  Google Scholar 

  • Romero, M. I., & Onaindia, M. (1995). Full grown aquatic macrophytes as indicator of river water quality in the northwest Iberian Peninsula. Annales Botanici Fennici, 32, 91–99.

    Google Scholar 

  • Salt, D. E., Blaylock, M., Kunmar, N. P. B. A., Dushenkov, V., Ensley, B. D., Raskin, I., et al. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474. doi:10.1038/nbt0595-468.

    Article  CAS  Google Scholar 

  • Sela, M., Garty, J., & Tel-Or, E. (1989). Accumulation and the effect of heavy metals on the water fern Azolla filiculoides. The New Phytologist, 112, 7–12. doi:10.1111/j.1469-8137.1989.tb00302.x.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Guar, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy metals. Ecological Engineering, 4, 37–43. doi:10.1016/0925-8574(94)00047-9.

    Article  Google Scholar 

  • Sinha, S., Gupta, M., & Chandra, P. (1996). Bioaccumulation and biochemical effects of mercury in the plant of Bacopa monnieri L. Environmental Toxicology and Water Quality, 11, 105–112. doi:10.1002/(SICI)1098-2256(1996)11:2<105::AID-TOX5>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  • Soltan, M. E., & Rashed, M. N. (2003). Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, 7, 321–334. doi:10.1016/S1093-0191(02)00002-3.

    Article  CAS  Google Scholar 

  • Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27–42. doi:10.1016/j.ecoleng.2004.01.004.

    Article  Google Scholar 

  • Srivastava, S. K., Singh, A. K., & Sharma, A. (1994). Studies on the uptake of lead and zinc by lignin obtained from liquor—A paper industry. Environmental Science & Technology, 15, 353–361.

    Article  CAS  Google Scholar 

  • Szymanowska, A., Samecka-Cymerman, A., & Kempers, A. J. (1999). Heavy metals in three lakes in West Poland. Ecotoxicology and Environmental Safety, 43, 21–29. doi:10.1006/eesa.1998.1747.

    Article  CAS  Google Scholar 

  • Tremp, H., & Kohler, A. (1995). The usefulness of macrophyte monitoring systems, exemplified on eutrophication and acidification of running waters. Acta Botanica Gallica, 142, 541–550.

    Google Scholar 

  • Tripathi, B. D., & Upadhyay, A. R. (2003). Dairy effluent polishing by aquatic macrophytes. Water, Air, and Soil Pollution, 143, 377–385. doi:10.1023/A:1022813125339.

    Article  CAS  Google Scholar 

  • USEPA (2002). United States Environmental Protection Agency, Effluent Guidelines and Standards. Sub-Chapter N, Parts 400–424, USA.

  • Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., et al. (2001). Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology, 67, 246–256.

    CAS  Google Scholar 

  • Vesk, P. A., & Allaway, W. G. (1997). Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off. Aquatic Botany, 59, 33–44. doi:10.1016/S0304-3770(97)00032-6.

    Article  CAS  Google Scholar 

  • Vesk, P. A., Nockolds, C. E., & Allaway, W. G. (1999). Metal localization in water hyacinth roots from an urban wetland. Plant, Cell & Environment, 22, 149–158. doi:10.1046/j.1365-3040.1999.00388.x.

    Article  Google Scholar 

  • Wagner, A., & Boman, J. (2003). Biomonitoring of trace elements in muscle and liver tissue of freshwater fish. Spectrochimica Acta. Part B, Atomic Spectroscopy, 58, 2215–2226. doi:10.1016/j.sab.2003.05.003.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Qian, J. H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water Hyacinth. Journal of Environmental Quality, 28, 339–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, P.K. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environ Monit Assess 158, 433–457 (2009). https://doi.org/10.1007/s10661-008-0595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0595-9

Keywords

Navigation