Skip to main content

Advertisement

Log in

Acid soil indicators in forest soils of the Cherry River Watershed, West Virginia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Declining forest health has been observed during the past several decades in several areas of the eastern USA, and some of this decline is attributed to acid deposition. Decreases in soil pH and increases in soil acidity are indicators of potential impacts on tree growth due to acid inputs and Al toxicity. The Cherry River watershed, which lies within the Monongahela National Forest in West Virginia, has some of the highest rates of acid deposition in Appalachia. East and West areas within the watershed, which showed differences in precipitation, stream chemistry, and vegetation composition, were compared to evaluate soil acidity conditions and to assess their degree of risk on tree growth. Thirty-one soil pits in the West area and 36 pits in the East area were dug and described, and soil samples from each horizon were analyzed for chemical parameters. In A horizons, East area soils averaged 3.7 pH with 9.4 cmolc kg − 1 of acidity compared to pH 4.0 and 6.2 cmolc kg − 1 of acidity in West area soils. Extractable cations (Ca, Mg, and Al) were significantly higher in the A, transition, and upper B horizons of East versus West soils. However, even with differences in cation concentrations, Ca/Al molar ratios were similar for East and West soils. For both sites using the Ca/Al ratio, a 50% risk of impaired tree growth was found for A horizons, while a 75% risk was found for deeper horizons. Low concentrations of base cations and high extractable Al in these soils translate into a high degree of risk for forest regeneration and tree growth after conventional tree harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. B., Burger, J. A., Jenkins, A. B., & Zelazny, L. (2000). Impact of harvesting and atmospheric pollution on nutrient depletion of eastern U.S. hardwood forests. Forest Ecology and Management, 138, 301–319. doi:10.1016/S0378-1127(00)00421-7.

    Article  Google Scholar 

  • Auchmoody, L. R., & Smith, H. C. (1977). Responses of yellow-poplar and red oak to fertilization in West Virginia. Soil Science Society of America Journal, 41, 803–807.

    CAS  Google Scholar 

  • Bailey, S. W., Horsley, S. B., & Long, R. P. (2005). Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Science Society of America Journal, 69, 681–690. doi:10.2136/sssaj2004.0057.

    Article  CAS  Google Scholar 

  • Bailey, S. W., Horsley, S. B., Long, R. P., & Hallett, R. A. (2004). Influence of edaphic factors on sugar maple nutrition and health on the Allegheny Plateau. Soil Science Society of America Journal, 68, 243–252.

    CAS  Google Scholar 

  • Bigelow, S. W., & Canham, C. D. (2007). Nutrient limitation of juvenile trees in a northern hardwood forest: Calcium and nitrate are preeminent. Forest Ecology and Management, 243, 310–319. doi:10.1016/j.foreco.2007.03.027 .

    Article  Google Scholar 

  • Binkley, D., Driscoll, C. T., Allen, H. L., Schoeneberger, P., & McAvory, D. (1998). Acidic deposition and forest soils: Context and case studies in the southeastern United States. New York: Springer.

    Google Scholar 

  • Blake, L., Goulding, K., Mott, C., & Johnston, A. (1999). Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401–412. doi:10.1046/j.1365-2389.1999.00253.x.

    Article  CAS  Google Scholar 

  • Blanco, J. A., Zavala, M. A., Imbert, J. B., & Castillo, F. J. (2005). Sustainability of forest management practices: Evaluation through a simulation model of nutrient cycling. Forest Ecology and Management, 213, 209–228. doi:10.1016/j.foreco.2005.03.042.

    Article  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    CAS  Google Scholar 

  • Demchik, M. C., & Sharpe, W. E. (1999). Foliar and root chemistry response of hay-scented fern to liming and fertilization. Northern Journal of Applied Forestry, 16, 33–35.

    Google Scholar 

  • Drohan, J. R., & Sharpe, W. E. (1997). Long-term changes in forest soil acidity in Pennsylvania, U.S.A. Water, Air, and Soil Pollution, 95, 299–311.

    CAS  Google Scholar 

  • Duchesne, L., Ouimet, R., & Morneau, C. (2003). Assessment of sugar maple health based on basal area growth pattern. Canadian Journal of Forest Research, 33, 2074–2080. doi:10.1139/x03-141

    Article  Google Scholar 

  • Elliott, K. J., & Knoepp, J. D. (2005). The effects of three regeneration harvest methods on plant diversity and soil characteristics in the southern Appalachians. Forest Ecology and Management, 211, 296–317. doi:10.1016/j.foreco.2005.02.064

    Article  Google Scholar 

  • Federer, C. A., Hornbeck, J. W., Tritton, L. M., Martin, C. W., Pierce, R. S., & Smith, C. T. (1989). Long-term depletion of calcium and other nutrients in eastern US forests. Environmental Management, 13, 593–601. doi:10.1007/BF01874965.

    Article  Google Scholar 

  • Finzi, A. C., van Breemen, N., & Canham, C. D. (1998a). Canopy tree–soil interactions within temperate forests: Species effects on soil carbon and nitrogen. Ecological Applications, 8, 440–446.

    Google Scholar 

  • Finzi, A. C., van Breemen, N., & Canham, C. D. (1998b). Canopy tree–soil interactions within temperate forests: Species effects on pH and cations. Ecological Applications, 8, 447–454.

    Google Scholar 

  • Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2003). Factors controlling long-term changes in soil pools of exchangeable basic cations and stream acid neutralizing capacity in a northern hardwood forest ecosystem. Biogeochemistry, 63, 161–185. doi:10.1023/A:1023308525316.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2000). Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138, 167–185. doi:10.1016/S0378-1127(00)00395-9.

    Article  Google Scholar 

  • Grimm, J. W., & Lynch, J. A. (2004). Enhanced wet deposition estimates using modeled precipitation inputs. Environmental Monitoring and Assessment, 90, 243–268. doi:10.1023/B:EMAS.0000003592.56006.a0.

    Article  Google Scholar 

  • Huber, C., Kreutzer, K., Röhle, H., & Rothe, A. (2004). Response of artificial acid irrigation, liming, and N-fertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of an N saturated Norway spruce stand. Forest Ecology and Management, 200, 3–21. doi:10.1016/j.foreco.2004.05.058.

    Article  Google Scholar 

  • Huntington, T. G. (2000). The potential for calcium depletion in forest ecosystems of southeastern United States: Review and analysis. Global Biogeochemical Cycles, 14, 623–638. doi:10.1029/1999GB001193.

    Article  CAS  Google Scholar 

  • Huntington, T. G., Hooper, R. P., Johnson, C. E., Aulenbach, B. T., Cappellato, R., & Blum, A. E. (2000). Calcium depletion in a southeastern United States forest ecosystem. Soil Science Society of America Journal, 64, 1845–1858.

    CAS  Google Scholar 

  • Jenkins, A. B. (2002). Organic carbon and fertility of forest soils on the Allegheny Plateau of West Virginia, West Virginia University, [On-line Abstract]. Available https://etd.wvu.edu/etd/etdDocumentData.jsp?jsp_etdId=2486. July 2005

  • Johnson, C. E. (2002). Cation exchange properties of acid forest soils of the northeastern USA. European Journal of Soil Science, 53, 271–282. doi:10.1046/j.1365-2389.2002.00441.x.

    Article  CAS  Google Scholar 

  • Joslin, J. D., Kelly, J. M., & Van Miegroet, H. (1992). Soil chemistry and nutrition of North American spruce-fir stands: Evidence for recent change. Journal of Environmental Quality, 21, 12–30.

    CAS  Google Scholar 

  • Joslin, J. D., Kelly, J. M., Wolfe, M. H., & Rustad, L. E. (1988). Elemental patterns in root and foliar tissues of mature spruce across sites exhibiting a gradient of soil aluminum. Water, Air, and Soil Pollution, 40, 375–390.

    CAS  Google Scholar 

  • Joslin, J. D., & Wolfe, M. H. (1989). Aluminum effects on northern red oak seedling growth in six forest soil horizons. Soil Science Society of America Journal, 53, 274–281.

    Article  CAS  Google Scholar 

  • Juice, S. M., Fahey, T. J., Siccama, T. G., Driscoll, C. T., Denny, E. G., Eagar, C., et al. (2006). Response of sugar maple to calcium addition to northern hardwood forest. Ecology, 85, 2171–2183.

    Google Scholar 

  • Lawrence, G. B., David, M. B., Lovett, G. M., Murdoch, P. S., Burns, D. A., Stoddard, J. L., et al. (1999). Soil calcium status and the response of stream chemistry to changing acidic deposition rates. Ecological Applications, 9, 1059–1072. doi:10.1890/1051-0761(1999)009[1059:SCSATR]2.0.CO;2.

    Article  Google Scholar 

  • Lyon, J., & Sharpe, W. E. (1999). An assessment of the Ca:Al ratios of selected Pennsylvania forest soils. Water, Air, and Soil Pollution, 109, 53–65. doi:10.1023/A:1005042426912.

    Article  CAS  Google Scholar 

  • Mann, L. K., Johnson, D. W., West, D. C., Cole, D. W., Hornbeck, J. W., Martin, C. W., et al. (1988). Effects of whole-tree and stem-only clearcutting on postharvest hydrologic losses, nutrient capital, and regrowth. Forest Science, 34, 412–428.

    Google Scholar 

  • Markewitz, D., Richter, D. D., Allen, H. L., & Urrego, J. B. (1998). Three decades of observed soil acidification in the Calhoun Experimental Forest: Has acid rain made a difference? Soil Science Society of America Journal, 62, 1428–1439.

    CAS  Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In: Methods of Soil Analysis, Part 2 (pp. 199–224). Agron. Monogr. 9. Soil Sci. Soc. Am., Madison, WI.

  • Mizel, N. (2005). The transport and fate of applied limestone sand and palletized lime following timber harvesting (p. 64 ). Master’s Thesis, The Pennsylvania State University.

  • Mount, H. R., & Paetzold, R. F. (2002). The temperature regime for selected soils in the United States. (United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska, Soil Survey Investigation Report No. 48)

  • National Atmospheric Deposition Program (NADP) (2005). National Atmospheric Deposition Program. July 2005. http://nadp.sws.uiuc.edu/.

  • Prescott, C. E. (2002). The influence of the forest canopy on nutrient cycling. Tree Physiology, 22, 1193–1200.

    CAS  Google Scholar 

  • Price, P. H. (1939). West Virginia geologic survey: Greenbrier County. Wheeling, WV: Wheeling News Litho.

  • Reger, D. B. (1921). West Virginia geologic survey: Nicholas County. Wheeling, WV: Wheeling News Litho.

  • Rengel, Z. (Ed.) (2003). Handbook of soil acidity. New York: Marcel Dekke.

    Google Scholar 

  • Rice, C. L., Martino, R. L., & Slucher, E. R. (1992). Regional aspects of Pottsville and Allegheny stratigraphy and depositional environments: Ohio and Kentucky. U.S. Geological Survey, Reston, VA. OF 92-0558.

  • SAS Institute (1989). Statistical analysis software. Cary, NC: SAS Inst.

    Google Scholar 

  • Schaberg, P. G., Tilley, J. W., Hawley, G. J., DeHayes, D. H., & Bailey, S. W. (2006). Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management, 223, 159–169. doi:10.1016/j.foreco.2005.10.067.

    Article  Google Scholar 

  • Schnably, J. (2003). Soil characterization, classification, and biomass accumulation in the Otter Creek wilderness. Master’s Thesis, West Virginia University, [On-line Abstract]. July 2005. Available: https://etd.wvu.edu/etd/etdDocumentData.jsp?jsp_etdId=3215.

  • Schwartz, P. A., Fahey, T. J., & McCulloch, C. E. (2003). Factors controlling spatial variation of tree species abundance in a forested landscape. Ecology, 84, 1862–1878. doi:10.1890/0012-9658(2003)084[1862:FCSVOT]2.0.CO;2.

    Article  Google Scholar 

  • Sims, J. T. (1996). Lime requirement. In: Methods of soil analysis, part 3: Chemical methods (pp. 491–515). SSSA Book Series No. 5. Soil Sci. Soc. Am., Madison, WI.

  • Soil Survey Division Staff (1993). Soil survey manual. USDA Handbook No. 18, US Gov. Print. Office, Washington, DC.

  • Soil Survey Staff (1996). Soil laboratory methods manual. Soil survey investigations report no. 42. Version 3.0. USDA Natural Resources Conservation Service. National Soil Survey Center. Lincoln, Nebraska.

  • Sponaugle, C. (2005). Properties and acid risk assessment of soils in two parts of the Cherry River Watershed, West Virginia (169 p). M.S. Thesis, Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV.

  • Thomas, G. W., & Hargrove, W. H., (1984). The chemistry of soil acidity. In: Soil acidity and liming, 2nd ed. (pp. 3–56). Agron. Monogr. 12. Soil Sci. Soc. Am., Madison WI.

  • U.S. Geological Survey (USGS) (1999). Soil-calcium depletion linked to acid rain and forest growth in the eastern United States. US Geological Survey 98–4267, Washington DC.

  • Washburn, C. S., & Arthur, M. (2002). Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Canadian Journal of Forest Research, 33, 2321–2330. doi:10.1139/x03-157.

    Article  Google Scholar 

  • Yanai, R. D., Blum, J. D., Hamburg, S. P., Arthur, M. A., Nezat, C. A., & Siccama, T. G. (2005). New insights into calcium depletion in northeastern forests. Journal of Forestry, 103, 14–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Skousen.

Additional information

Contribution of the West Virginia Agricultural and Forestry Experiment Station, Article #3018, and also supported by funds from the USDA Forest Service, Monongahela National Forest, Elkins, WV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farr, C., Skousen, J., Edwards, P. et al. Acid soil indicators in forest soils of the Cherry River Watershed, West Virginia. Environ Monit Assess 158, 343–353 (2009). https://doi.org/10.1007/s10661-008-0588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0588-8

Keywords

Navigation