Environmental Monitoring and Assessment

, Volume 157, Issue 1–4, pp 211–222 | Cite as

Contaminant concentrations in Asian carps, invasive species in the Mississippi and Illinois Rivers

  • D. L. Rogowski
  • D. J. Soucek
  • J. M. Levengood
  • S. R. Johnson
  • J. H. Chick
  • J. M. Dettmers
  • M. A. Pegg
  • J. M. Epifanio
Article

Abstract

Populations of invasive fishes quickly reach extremely high biomass. Before control methods can be applied, however, an understanding of the contaminant loads of these invaders carry is needed. We investigated differences in concentrations of selected elements in two invasive carp species as a function of sampling site, fish species, length and trophic differences using stable isotopes (δ15N, δ13C). Fish were collected from three different sites, the Illinois River near Havana, Illinois, and two sites in the Mississippi River, upstream and downstream of the Illinois River confluence. Five bighead carp (Hypophthalmichthys nobilis) and five silver carp (Hypophthalmichthys molitrix) from each site were collected for muscle tissue analyses. Freshwater mussels (Amblema plicata) previously collected in the same areas were used as an isotopic baseline to standardize fish results among sites. Total fish length, trophic position, and corrected 13C, were significantly related to concentrations of metals in muscle. Fish length explained the most variation in metal concentrations, with most of that variation related to mercury levels. This result was not unexpected because larger fish are older, giving them a higher probability of exposure and accumulation of contaminants. There was a significant difference in stable isotope profiles between the two species. Bighead carp occupied a higher trophic position and had higher levels of corrected 13C than silver carp. Additionally bighead carp had significantly lower concentrations of arsenic and selenium than silver carp. Stable isotope ratios of nitrogen in Asian carp were at levels that are more commonly associated with higher-level predators, or from organisms in areas containing high loads of wastewater effluent.

Keywords

Stable isotopes Metals Carp Mississippi River Illinois River Invasive species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C., & Cabana, G. (2006). Does δ 15N in river food webs reflect the intensity and origin of N loads from the watershed? The Science of the Total Environment, 367, 968–978. doi:10.1016/j.scitotenv.2006.01.029.CrossRefGoogle Scholar
  2. Besser, J. M., Giesy, J. P., Brown, R. W., Buell, J. M., & Dawson, G. A. (1996). Selenium bioaccumulation and hazards in a fish community affected by coal fly ash effluent. Ecotoxicology and Environmental Safety, 35, 7–15. doi:10.1006/eesa.1996.0076.CrossRefGoogle Scholar
  3. Bunn, S. E., Barton, D. R., Haynes, H. B. N., Power, G., & Pope, M. A. (1989). Stable isotope analysis of carbon flow in a tundra river system. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1769–1775. doi:10.1139/f89-224.CrossRefGoogle Scholar
  4. Burger, J., Gaines, K. F., Boring, C. S., Stephens, J., Warren, L., Snodgrass, J., et al. (2001). Mercury and selenium in fish from the Savannah River: Species, trophic level, and locational differences. Environmental Research, 87, 108–118. doi:10.1006/enrs.2001.4294.CrossRefGoogle Scholar
  5. Chick, J. H., & Pegg, M. A. (2001). Invasive Carp in the Mississippi River Basin. Science, 292, 2251–2252. doi:10.1126/science.292.5525.2250.CrossRefGoogle Scholar
  6. Cole, M. L., Valiela, I., Kroeger, K. D., Tomasky, G. L., Cebrian, J., Wigand, C., et al. (2004). Assessment of a δ 15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. Journal of Environmental Quality, 33, 124–132.Google Scholar
  7. Cremer, M. C., & Smitherman, R. O. (1980). Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture (Amsterdam, Netherlands), 20, 57–64. doi:10.1016/0044-8486(80)90061-7.CrossRefGoogle Scholar
  8. Dong, S., & Li, D. (1994). Comparative studies on the feeding selectivity of silver carp Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis. Journal of Fish Biology, 44, 621–626. doi:10.1111/j.1095-8649.1994.tb01238.x.CrossRefGoogle Scholar
  9. Fitzpatrick, F. A., Scudder, B. C., Crawford, J. K., Sieverling, J. B., & Schmidt, A. R. (1995). Surface water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin–Major and trace elements in water, sediment, and biota, 1978 through 1990: U.S. Geological Survey Water-Resources Investigations Report 95-4045, (p. 254).Google Scholar
  10. France, R. (1996). Ontogenic shift in crayfish δ 13C as a measure of land-water ecotonal coupling. Oecologia, 107, 239–242. doi:10.1007/BF00327908.CrossRefGoogle Scholar
  11. Fry, B. (2006). Stable isotope ecology (p. 308). NY: Springer Science + Business, Media LLC.Google Scholar
  12. Fry, B., Gace, A., & McClelland, J. W. (2003). Chemical Indicators of anthropogenic nitrogen-loading in four Pacific estuaries. Pacific Science, 57, 77–101. doi:10.1353/psc.2003.0004.CrossRefGoogle Scholar
  13. Groschen, G. E., Harris, M. A., King, R. B., Terrio, P. J., & Warner, K. L. (2000). Water quality in the lower Illinois River Basin, Illinois, 1995–98: U.S. Geological Survey Circular 1209, 36 p. http://pubs.water.usgs.gov/circ1209/. Accessed 29 October, 2007.
  14. Gu, B. H., Schell, D. M., Huang, X. H., & Yie, F. L. (1996). Stable isotope evidence for dietary overlap between two planktivorous fishes in aquaculture ponds. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2814–2818. doi:10.1139/cjfas-53-12-2814.CrossRefGoogle Scholar
  15. Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. The Science of the Total Environment, 326, 1–31. doi:10.1016/j.scitotenv.2004.01.019.CrossRefGoogle Scholar
  16. Hecky, R. E., & Hesslein, R. H. (1995). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 14, 631–653. doi:10.2307/1467546.CrossRefGoogle Scholar
  17. Herwig, B. R., Wahl, D. H., Dettmers, J. M., & Soluk, D. A. (2007). Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences, 64, 495–508. doi:10.1139/F07-023.CrossRefGoogle Scholar
  18. Hunter, R. G., Carroll, J. H., & Butler, J. S. (1981). The relationship of trophic level to arsenic burden in fish of a southern Great Plains lake. Journal of Freshwater Ecology, 1, 121–127.Google Scholar
  19. Jardine, T. D., Kidd, K. A., & Fisk, A. T. (2006). Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environmental Science & Technology, 33, 108–121.Google Scholar
  20. Kamman, N. C., Burgess, N. M., Driscoll, C. T., Simonin, H. A., Goodale, W., Linehan, J., et al. (2005). Mercury in freshwater fish of Northeast North America—A geographic perspective based on fish tissue monitoring databases. Ecotoxicology (London, England), 14, 163–180. doi:10.1007/s10646-004-6267-9.Google Scholar
  21. Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier Science.Google Scholar
  22. Mason, R. P., Laporte, J.-M., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38, 283–297. doi:10.1007/s002449910038.CrossRefGoogle Scholar
  23. McClain, W., Chumchal, M., Drenner, R., & Newland, L. (2006). Mercury concentrations in fish from Lake Meredith, Texas: Implications for the issuance of fish consumption advisories. Environmental Monitoring and Assessment, 123, 249–258. doi:10.1007/s10661-006-9194-9.CrossRefGoogle Scholar
  24. McClelland, J. W., & Valiela, I. (1998). Linking nitrogen in estuarine producers to land derived sources. Limnology and Oceanography, 43, 577–585.Google Scholar
  25. McCutchan, J. H., Jr, Lewis, W. M., Jr, Kendall, C., & McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378–390. doi:10.1034/j.1600-0706.2003.12098.x.CrossRefGoogle Scholar
  26. McIntyre, J. K., & Beauchamp, D. A. (2007). Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington. The Science of the Total Environment, 372, 571–584. doi:10.1016/j.scitotenv.2006.10.035.CrossRefGoogle Scholar
  27. Nuevo, M., Sheehan, R. J., & Wills, P. S. (2004). Age and growth of the bighead carp Hypophthalmichthys nobilis (Richardson 1845) in the middle Mississippi River. Archiv fuer Hydrobiologie, 160, 215–230. doi:10.1127/0003-9136/2004/0160-0215.CrossRefGoogle Scholar
  28. Perga, M. E., & Gerdeaux, D. (2005). Are fish what they eat all year round? Oecologia, 144, 598–606. doi:10.1007/s00442-005-0069-5.CrossRefGoogle Scholar
  29. Pinnegar, J. K., & Polunin, N. V. C. (1999). Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Functional Ecology, 13, 225–231. doi:10.1046/j.1365-2435.1999.00301.x.CrossRefGoogle Scholar
  30. Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718.Google Scholar
  31. Power, M., Klein, G. M., Guiguer, K. R. R. A., & Kwan, M. K. H. (2002). Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39, 819–830. doi:10.1046/j.1365-2664.2002.00758.x.CrossRefGoogle Scholar
  32. Radke, R. J., & Kahl, U. (2002). Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto- and zooplankton in a mesotrophic reservoir: Results from an enclosure experiment. Freshwater Biology, 47, 2337–2344. doi:10.1046/j.1365-2427.2002.00993.x.CrossRefGoogle Scholar
  33. Reinfelder, J. R., & Fisher, N. S. (1991). The assimilation of elements by marine copepods. Science, 251, 794–796. doi:10.1126/science.251.4995.794.CrossRefGoogle Scholar
  34. Rogowski, D., Soucek, D., Chick, J., Dettmers, J., Pegg, M., Johnson, S., et al. (2005). A preliminary ecotoxicological assessment of Asian carp species in the Mississippi and Illinois Rivers. Illinois Natural History Survey, Technical Report 05/05.Google Scholar
  35. Ruus, A., Ugland, K. I., & Skaare, J. U. (2002). Influence of trophic position on organochlorine concentrations and compositional patterns in a marine food web. Environmental Toxicology and Chemistry, 21, 2356–2364. doi:10.1897/1551-5028(2002)021<2356:IOTPOO>2.0.CO;2.CrossRefGoogle Scholar
  36. Schlacher, T. A., Liddell, B., Gaston, T. F., & Schlacher-Hoenlinger, M. (2005). Fish track wastewater pollution to estuaries. Oecologia, 144, 570–584. doi:10.1007/s00442-005-0041-4.CrossRefGoogle Scholar
  37. Schmidt, A. R., & Blanchard, S. F.(1996). Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin: Results of investigation through April 1992. United States Geological Survey, Water Resources Investigations Report 96-4223. http://il.water.usgs.gov/nawqa/uirb/pubs/reports/WRIR_96-4223/index.html. Accessed 21 January 2005.
  38. Schmitt, C. J., & Brumbaugh, W. G. (1990). National Contaminant Biomonitoring Program: Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in freshwater fishes of the United States, 1976–1984. Archives of Environmental Contamination and Toxicology, 19, 731–747. doi:10.1007/BF01183991.CrossRefGoogle Scholar
  39. Schrank, S. J., Guy, C. S., & Fairchild, J. F. (2003). Competitive interactions between age-0 bighead carp and paddlefish. Transactions of the American Fisheries Society, 132, 1222–1228. doi:10.1577/T02-071.CrossRefGoogle Scholar
  40. Sotiropoulos, M. A., Tonn, W. M., & Wassenaar, L. I. (2004). Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: Potential consequences for food web studies. Ecology Freshwater Fish, 13, 155–160. doi:10.1111/j.1600-0633.2004.00056.x.CrossRefGoogle Scholar
  41. Sterner, R. W., & George, N. B. (2000). Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology, 81, 127–140.CrossRefGoogle Scholar
  42. Tanner, D. K., Brazner, J. C., & Brady, V. J. (2000). Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1243–1251. doi:10.1139/cjfas-57-6-1243.CrossRefGoogle Scholar
  43. Vander Zanden, M. J., & Rasmussen, J. B. (2001). Variation in δ 15N and δ 13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography, 46, 2061–2066.CrossRefGoogle Scholar
  44. Williamson, C. J., & Garvey, J. E. (2005). Growth, fecundity, and diets of newly established silver carp in the middle Mississippi River. Transactions of the American Fisheries Society, 134, 1423–1430. doi:10.1577/T04-106.1.CrossRefGoogle Scholar
  45. Xu, Y., & Wang, W.-X. (2002). Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus. Marine Ecology Progress Series, 238, 173–186. doi:10.3354/meps238173.CrossRefGoogle Scholar
  46. Xu, J., & Xie, P. (2004). Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. Journal of Freshwater Ecology, 19, 645–650.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. L. Rogowski
    • 1
    • 3
  • D. J. Soucek
    • 1
  • J. M. Levengood
    • 1
  • S. R. Johnson
    • 1
    • 2
  • J. H. Chick
    • 1
  • J. M. Dettmers
    • 1
    • 4
  • M. A. Pegg
    • 1
    • 5
  • J. M. Epifanio
    • 1
  1. 1.Illinois Natural History SurveyMC 652 ChampaignUSA
  2. 2.Carbon DynamicsSpringfieldUSA
  3. 3.Department of Natural Resources ManagementTexas Tech UniversityLubbockUSA
  4. 4.Great Lakes Fishery CommissionAnn ArborUSA
  5. 5.School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations