Skip to main content
Log in

Use of biomarkers in Nile tilapia (Oreochromis niloticus) to assess the impacts of pollution in Bolgoda Lake, an urban water body in Sri Lanka

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study reports the first analysis of water pollutants in Sri Lankan waters using a suite of biomarkers in Nile tilapia (Oreochromis niloticus) residing in Bolgoda Lake which receives urban, industrial and domestic wastes from multiple sources. The fish were collected from the lake in the dry period (April 2005) and wet periods (September 2005, October 2006) and the levels of biomarkers viz. hepatic ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), metallothioneins, biliary fluorescent aromatic compounds, brain and muscle cholinesterases (ChE) were compared with those of the laboratory reared control fish and the fish obtained from a less polluted water body, Bathalagoda reservoir (reference site). The results revealed that biomarker levels of the fish collected from the reference site were not significantly different from the controls. Hepatic EROD and GST activities in fish from Bolgoda Lake were induced 4.2–16.6 folds and 1.4–3.3 folds respectively compared with the control fish. Analysis of bile in the lake fish revealed recent uptake of naphthalene, pyrene and benzo(a)pyrene type polycyclic aromatic hydrocarbons (PAHs). The induction of EROD activities in feral fish reflects the exposure of fish to aryl hydrocarbon receptor agonists including PAHs present as pollutants in the Bolgoda Lake. Cholinesterase activity in the fish inhabiting one sampling site of Bolgoda Lake was lower (22–40% inhibition) than the activity measured in the control fish indicating the presence of anticholinesterase pollutants in the area. Hepatic metallothionein levels in the lake fish were higher (1.9–3.2 folds) in comparison to the controls indicating metal exposure. The results support the potential use of these biomarkers in Nile tilapia in assessing pollution in tropical water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aas, E., Beyer, J., & Goksoyr, A. (2000). Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: An evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers, 5(1), 9–23. doi:10.1080/135475000230505.

    Article  CAS  Google Scholar 

  • Cook, J. M., Garder, M. J., Griffith, A. H., Jessep, M. A., Ravenscroft, J. E., Yates, R. (1997). The comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin, 34(8), 37–644. doi:10.1016/S0025-326X(96)00186-5.

    Article  Google Scholar 

  • Ellman, G. L., Coutney, K. D., Anders Jr. V., & Featherstone, R. M. (1961). A new and rapid colourimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 85–95. doi:10.1016/0006-2952(61)90145-9.

    Article  Google Scholar 

  • Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates and indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37–45. doi:10.1897/1551-5028(2001)020<0037:AIIEFA>2.0.CO;2.

    Article  CAS  Google Scholar 

  • George, S. G. (1994). Enzymology and molecular biology of phase II xenobiotic conjugating enzymes in fish. In D. C. Malins, & G. K. Ostrander (Eds.), Aquatic toxicology: Molecular, biochemical and cellular perspective (pp. 37–85). Boca Raton, FL: Lewis.

    Google Scholar 

  • Gold-Bouchot, G., Zapta-Perez, O., Rodriguez-Fuentes, G., Ceja-Moreno, V., Rio-Garcia, M. D., & Chzan-Cocom, E. (2006). Biomarkers and pollutants in the Nile tilapia, Oreochromis niloticus, in four lakes from San Miguel, Chiapa, Mexico. International Journal of Environmental Pollution, 26(1/2/3), 130–141.

    Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  • Klotz, A. V., Stegeman, J. J., & Walsh, C. (1984). An alternative 7-ethoxyresorufin O-deethylase activity assay; a continuous visible spectrometric method for measurement of cytochrome P-450 monooxygenase activity. Analytical Biochemistry, 140, 138–145. doi:10.1016/0003-2697(84)90144-1.

    Article  CAS  Google Scholar 

  • Livingstone, D. R., & Goldfarb, P. S. (1998). Biomonitoring in the aquatic environment: Use of cytochrome P 4501A and other molecular biomarkers in fish and mussels. In J. M. Lynch, & A. Wiseman (Eds.), Environmental biomonitoring. the biotechnology, ecotoxicology interface (pp. 101–129). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lowry, H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Napierska, D., Kopecka, J., Podolska, M., & Pempkowiak, J. (2006). Hepatic glutathione S-transferase activity in flounder collected from contaminated and reference sites along the Polish Coast. Ecotoxicology and Environmental Safety, 65, 355–363. doi:10.1016/j.ecoenv.2005.07.022.

    Article  CAS  Google Scholar 

  • Olafson, R. W., & Olsson, P. (1991). Electrochemical detection of metallothionein. Methods in Enzymology, 205, 205–213. doi:10.1016/0076-6879(91)05100-A.

    Article  CAS  Google Scholar 

  • Pathiratne, A., Chandrasekara, L. W. H. U., & De Seram, P. K. C. (2008). Effects of biological and technical factors on brain and muscle cholinesterases in Nile tilapia, Oreochromis niloticus: Implications for biomonitoring neurotoxic contaminations. Archives of Environmental Contamination and Toxicology, 54, 309–317. doi:10.1007/s00244-007-9025-1

    Article  CAS  Google Scholar 

  • Pathiratne, K. A. S., De Silva, O. C. P., Hehemann, D., Atkinson, I., & Wei, R. (2007). Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in Bolgoda and Beira Lakes, Sri Lanka. Bulletin of Environmental Contamination and Toxicology, 79(2), 135–140.

    Article  CAS  Google Scholar 

  • Payne, J. F., Mathieu, A., Melvin, W., & Fancey, L. L. (1996). Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in New Foundland. Marine Pollution Bulletin, 32, 225–231. doi:10.1016/0025-326X(95)00112-Z.

    Article  CAS  Google Scholar 

  • Peakall, D. W. (1994). Biomarkers: The way forward in environmental assessment. Toxicology and Ecotoxicology News, 1, 55–60.

    Google Scholar 

  • Roesijadi, G., & Robinson, W. E. R. (1994). Metal regulation in aquatic animals: Mechanisms of uptake, accumulation and release. In D. C. Malins, & G. K. Ostrande (Eds.), Aquatic toxicology: Molecular, biochemical and cellular perspectives (pp. 387–420). Boca Raton, FL: Lewis.

    Google Scholar 

  • Senarathne, P., & Pathiratne, K. A. S. (2007). Accumulation of heavy metals in a food fish Mystus gulio inhabiting Bolgoda Lake, Sri Lanka. Sri Lanka Journal of Aquatic Sciences, 12, 61–76.

    Google Scholar 

  • Silva, E. I. L. (1996). Water quality in Sri Lanka—a review on twelve waterbodies. Kandy, Sri Lanka: Institute of Fundamental Studies.

    Google Scholar 

  • Van der Oost, R., Beyer, J., & Vermeulan, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13, 57–149. doi:10.1016/S1382-6689(02)00126-6.

    Article  Google Scholar 

  • Wellala, W. D. G. S. C. (2005). Status of the fishery of Bathalagoda reservoir, Sri Lanka. M.Sc. Dissertation, University of Kelaniya, Sri Lanka.

  • Whyte, J. J., Jung, R. E., Schmitt, C. J., & Tillitt, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30, 347–570. doi:10.1080/10408440091159239.

    Article  CAS  Google Scholar 

  • Wijeyaratne, W. M. D. N., & Pathiratne, A. (2006). Acetylcholinesterase inhibition and gill lesions in Rasbora caverii an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka. Ecotoxicology (London, England), 15, 609–619. doi:10.1007/s10646-006-0101-5.

    CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Zinkl, J. G., Lockhart, W. L., Kenny, S. A., & Ward, F. J. (1991). The effects of cholinesterase-inhibiting chemicals on fish. In: P. Mineau (Ed.), Cholinesterse-inhibiting insecticides. Chemicals in agriculture (Vol. 2, pp. 151–172). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pathiratne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathiratne, A., Chandrasekera, L.W.H.U. & Pathiratne, K.A.S. Use of biomarkers in Nile tilapia (Oreochromis niloticus) to assess the impacts of pollution in Bolgoda Lake, an urban water body in Sri Lanka. Environ Monit Assess 156, 361–375 (2009). https://doi.org/10.1007/s10661-008-0490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0490-4

Keywords

Navigation