Skip to main content

Advertisement

Log in

Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Various natural hazards such as landslides, avalanches, floods and debris flows can result in enormous property damages and human casualties in Eastern Black Sea region of Turkey. Mountainous topographic character and high frequency of heavy rain are the main factors for landslide occurrence in Ardesen, Rize. For this reason, the main target of the present study is to evaluate the landslide hazards using a sequence of historical aerial photographs in Ardesen (Rize), Turkey, by Photogrammetry and Geographical Information System (GIS). Landslide locations in the study area were identified by interpretation of aerial photographs dated in 1973 and 2002, and by field surveys. In the study, the selected factors conditioning landslides are lithology, slope gradient, slope aspect, vegetation cover, land class, climate, rainfall and proximity to roads. These factors were considered as effective on the occurrence of landslides. The areas under landslide threat were analyzed and mapped considering the landslide conditioning factors. Some of the conditioning factors were investigated and estimated by employing visual interpretation of aerial photos and topographic data. The results showed that the slope, lithology, terrain roughness, proximity to roads, and the cover type played important roles on landslide occurrence. The results also showed that degree of landslides was affected by the number of houses constructed in the region. As a consequence, the method employed in the study provides important benefits for landslide hazard mitigation efforts, because a combination of both photogrammetric techniques and GIS is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44. doi:10.1007/s100640050066.

    Article  Google Scholar 

  • Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269–277. doi:10.1016/0013-7952(92)90053-2.

    Article  Google Scholar 

  • Atasoy, M., Karsli, F., Biyik, C., & Demir, O. (2006). Determining land use changes with digital photogrammetric techniques. Environmental Engineering Science, 23(4), 712–721. doi:10.1089/ees.2006.23.712.

    Article  CAS  Google Scholar 

  • Atkinson, P. M., & Massari, R. (1998). Generalized linear modelling of susceptibility to landsliding in the Central Apennies, Italy. Computers & Geosciences, 24(4), 373–385. doi:10.1016/S0098-3004(97)00117-9.

    Article  Google Scholar 

  • Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibilitymapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445. doi:10.1016/j.enggeo.2005.08.004.

    Article  Google Scholar 

  • Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16, 427–445. doi:10.1002/esp.3290160505.

    Article  Google Scholar 

  • Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949–962. doi:10.1007/s00254-003-0838-6.

    Article  Google Scholar 

  • Chung, C. F., Fabbri, A. G., & van Westen, C. J. (1995). In A. Carrara & F. Guzzetti (Eds.), Multivariate regression analysis for landslide hazard zonation, geographical information systems in assessing natural hazards (pp. 107–133). Dordrecht, The Netherlands: Kluwer Academin Publishers.

    Google Scholar 

  • Clerici, A., Perego, S., Tellini, C., & Vescovi, P. (2002). A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology, 48, 349–364. doi:10.1016/S0169-555X(02)00079-X.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381–391. doi:10.1007/s002540000163.

    Article  Google Scholar 

  • Gokceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44, 147–161. doi:10.1016/S0013-7952(97)81260-4.

    Article  Google Scholar 

  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., & Can, T. (2005). The March 17, 2005 Kuzulu landslide (Sivas, Turkey) and landslide susceptibility map of its close vicinity. Engineering Geology, 81, 65–83. doi:10.1016/j.enggeo.2005.07.011.

    Article  Google Scholar 

  • Gostelow, P. (1991). Rainfall and landslides. In M. Almeida-Teixeira (Ed.), Prevention and control of landslides and other mass movements (pp. 139–161). Brussels: CEC.

    Google Scholar 

  • Government of Rize (2001). Environmental state report of 2000 Year, Rize (in Turkish).

  • Greenway, D. R. (1987). Vegetation and slope stability. In M. G. Anderson, & K. S. Richards (Eds.), Slope stability (pp. 187–230). Chichester, UK: Wiley.

    Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181–216. doi:10.1016/S0169-555X(99)00078-1.

    Article  Google Scholar 

  • Haigh, M. J., Rawat, J. S., Rawat, M. S., Bartarya, S. K., & Rai, S. P. (1995). Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. Forest Ecology and Management, 78, 173–189. doi:10.1016/0378-1127(95)03584-5.

    Article  Google Scholar 

  • Hansen, A. (1984). Landslide hazard analysis. In D. Brunsden & D. B. Prior (Eds.), Slope instability (pp. 523–602). Chichester: Wiley.

    Google Scholar 

  • Jakob, M. (2000). The impacts of logging on landslide activity at Clayoquot Sound British Columbia. Catena, 38, 279–300. doi:10.1016/S0341-8162(99)00078-8.

    Article  Google Scholar 

  • Karsli, F., Yalcin, A., Atasoy, M., Demir, O., Reis, S., & Ayhan, E. (2004). Landslide assessment by using digital photogrammetric techniques. XXth ISPRS Congress, 12–23 July, Turkey.

  • Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095–1113. doi:10.1007/s002540100310.

    Article  Google Scholar 

  • Mehrotra, G., Kanungo, D., & Mahadeviah, K. (1996). Landslide hazard assessment—a need for environmental management. In Proc. 7th international symposium on landslides (pp. 315–320). Norway: Trondheim.

    Google Scholar 

  • Nagarajan, R., Roy, A., Vinod, K. R., Mukherjee, A., & Khire, M. V. (2000). Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment, 58, 275–287. doi:10.1007/s100649900032.

    Article  Google Scholar 

  • Ocakoglu, F., Gokceoglu, C., & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: A case study from NW Turkey. Geomorphology, 42, 329–341. doi:10.1016/S0169-555X(01)00094-0.

    Article  Google Scholar 

  • Pachauri, A. K., Gupta, P. V., & Chander, R. (1998). Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology, 36(3–4), 325–334. doi:10.1007/s002540050348.

    Article  Google Scholar 

  • Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS- based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing, 23(2), 357–369. doi:10.1080/01431160010014260.

    Article  Google Scholar 

  • Schuster, R. L. (1995). Landslides and floods triggered by the June 6, 1994, Paez earthquake, southwestern Colombia. Association of Engineering Geologists, AEG News, 38(1), 32–33.

    Google Scholar 

  • Selby, M. (1993). Hillslope materials and processes. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Shrestha, D. P., Zinck, J. A., & Van Ranst, E. (2004). Modelling land degradation in the Nepalese Himalaya. Catena, 57(2), 135–156. doi:10.1016/j.catena.2003.11.003.

    Article  Google Scholar 

  • Singhroy, V., & Mattar, K. (2000). SAR image techniques for mapping areas of landslides. In Proceedings XIXth ISPRS congress (pp. 1395–1402). 16–23 July, Amsterdam.

  • SPO (2000). Regional development plan of the East Blacksea Region (Vol. 2), The Final Draft Report, Ankara (in Turkish).

  • Temesgen, B., Mohammed, M. U., & Korme, T. (2001). Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the landslides in the Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth, 26, 665–675.

    Google Scholar 

  • Turrini, M. C., & Visintainer, P. (1998). Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy. Engineering Geology, 50, 255–265. doi:10.1016/S0013-7952(98)00022-2.

    Article  Google Scholar 

  • Wu, T. H. (1995). Slope stabilization. In R. P. C. Morgan & R. J. Rickson (Eds.), Slope stabilization and erosion control: A bioengineering approach (pp. 5–58). London: E&FN.

    Google Scholar 

  • Wu, W., & Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), 2097–2110. doi:10.1029/95WR01136.

    Article  Google Scholar 

  • Yalcin, A., & Bulut, F. (2007). Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Ardesen (NE-Turkey). Natural Hazards, 41, 201–226. doi:10.1007/s11069-006-9030-0.

    Article  Google Scholar 

  • Yılmaz, M., Altun, L., Karagül, R., Yılmaz, F., & ve Usta, A. (2006). Results and causalities of landslides occured in Rize region, first Rize symposium, 16–19 November, Rize (in Turkish).

  • Zezere, J. L., Ferreira, A. B., & Rodrigues, M. L. (1999). Landslides in the North of Lisbon Region (Portugal): Conditioning and triggering factors. Physics and Chemistry of the Earth (A), 24(10), 925–934. doi:10.1016/S1464-1895(99)00137-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Atasoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsli, F., Atasoy, M., Yalcin, A. et al. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monit Assess 156, 241–255 (2009). https://doi.org/10.1007/s10661-008-0481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0481-5

Keywords

Navigation