Skip to main content

Linking stream and landscape trajectories in the southern Appalachians

Abstract

A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these “hazard sites.” The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart’s distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km2 region in western North Carolina’s Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.

This is a preview of subscription content, access via your institution.

References

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284. doi:10.1146/annurev.ecolsys.35.120202.110122.

    Article  Google Scholar 

  • Berkman, H. E., & Rabeni, C. F. (1987). Effect of siltation on stream fish communities. Environmental Biology of Fishes, 18, 285–294. doi:10.1007/BF00004881.

    Article  Google Scholar 

  • Booth, D. B., & Jackson, R. (1997). Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association, 33, 1077–1090. doi:10.1111/j.1752-1688.1997.tb04126.x.

    Article  Google Scholar 

  • Brant, L. A. (2003). A new species of Meridion (Bacillariophyceae) from western North Carolina. Southeastern Naturalist, 2, 409–418. doi:10.1656/1528-7092(2003)002[0409:ANSOMB]2.0.CO;2.

    Article  Google Scholar 

  • Camburn, K. E., Lowe, R. L., & Stoneburner, D. L. (1978). The haptobenthic diatom flora of Long Branch Creek, South Carolina. Nova Hedwigia, 30, 149–279.

    Google Scholar 

  • Carpenter, S. R., Ludwig, D., & Brock, W. A. (1999). Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications, 9, 751–771. doi:10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2.

    Article  Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x.

    Article  Google Scholar 

  • Deal, J. M. (2001). Procedures for chemical analysis: Coweeta hydrologic laboratory. Retrieved from http://coweeta.ecology.uga.edu/webdocs/1/pdf/AnalyticalLabCookbook15Jan2002.pdf.

  • Delong, M. D., & Brusven, M. A. (1998). Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management, 22, 445–457. doi:10.1007/s002679900118.

    Article  Google Scholar 

  • Desmond, J. S., Deutschman, D. H., & Zedler, J. B. (2002). Spatial and temporal variation in estuarine fish and invertebrate assemblages: Analysis of an 11-year data set. Estuaries, 25, 552–569

    Article  Google Scholar 

  • Doyle, M. W., Harbor, J. M., Rich, C. F. & Spacie, A. (2000). Examining the effects of urbanization on streams using indicators of geomorphic stability. Physical Geography, 21, 155–181.

    Google Scholar 

  • Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.

    Google Scholar 

  • Erhman, T. P., & Lamberti, G. A. (1992). Hydraulic and particulate matter retention in a 3rd-order Indiana stream. Journal of the North American Benthological Society, 11, 341–349. doi:10.2307/1467556.

    Article  Google Scholar 

  • Ford, J., & Rose, C. E. (2000). Characterizing small subbasins: A case study from coastal Oregon. Environmental Monitoring And Assessment, 64, 359–377. doi:10.1023/A:1006451420945.

    Article  Google Scholar 

  • Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207. doi:10.1146/annurev.ecolsys.29.1.207.

    Article  Google Scholar 

  • Freeman, M. C., Crawford, M. K., Barrett, J. C., Facey, D. E., Flood, M. G., Hill, J., et al. (1988). Fish assemblage stability in a southern Appalachian stream. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1948–1958.

    Article  Google Scholar 

  • Gardiner, E. P. (2002). Geospatial techniques for stream research in the southern Blue Ridge Mountains. Dissertation, University of Georgia.

  • Gergel, S. E., Turner, M. G., Miller, J. R., Melack, J. M., & Stanley, E. H. (2002). Landscape indicators of human impacts to riverine systems. Aquatic Sciences, 64, 118–128. doi:10.1007/s00027-002-8060-2.

    Article  CAS  Google Scholar 

  • Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1992). Stream hydrology: An introduction for ecologists. New York: Wiley.

    Google Scholar 

  • Greenwood, J. L., & Rosemond, A. D. (2005). Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2033–2045. doi:10.1139/f05-117.

    Article  CAS  Google Scholar 

  • Greig-Smith, P. (1983). Quantitative plant ecology. Berkeley: University of California Press.

    Google Scholar 

  • Grimm, N. B., Grove, J. M., Pickett, S. T. A., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. BioScience, 50, 571–584. doi:10.1641/0006-3568(2000)050[0571:IATLTO]2.0.CO;2.

    Article  Google Scholar 

  • Hampson, P. S., Treece, J. M. W., Johnson, G. C., Ahlstedt, S. A., & Connell, J. F. (2000). Water quality in the upper Tennessee River Basin, Tennessee, North Carolina, Virginia, and Georgia 1994–98. Circular 1205. Washington: USGS.

    Google Scholar 

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones III, E. B. D. (1998). Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America, 95, 14843–14847. doi:10.1073/pnas.95.25.14843.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., et al. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556. doi:10.2307/1468113.

    Article  Google Scholar 

  • Hawkins, C. P., & Vinson, M. R. (2000). Weak correspondence between landscape classifications and stream invertebrate assemblages: Implications for bioassessment. Journal of The North American Benthological Society, 19, 501–517. doi:10.2307/1468111.

    Article  Google Scholar 

  • Heino, J., Muotka, T., Mykra, H., Paavola, R., Hamalainen, H., & Koskenniemi, E. (2003). Defining macroinvertebrate assemblage types of headwater streams: Implications for bioassessment and conservation. Ecological Applications, 13, 842–852. doi:10.1890/1051-0761(2003)013[0842:DMATOH]2.0.CO;2.

    Article  Google Scholar 

  • Ilmonen, J., & Paasivirta, L. (2005). Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: Patterns in abundance and diversity. Hydrobiologia, 533, 99–113. doi:10.1007/s10750-004-2399-4.

    Article  Google Scholar 

  • Jenkins, R. E., & Burkhead, N. M. (1994). Freshwater fishes of Virginia. Bethesda: American Fisheries Society.

    Google Scholar 

  • Jones, E. B. D., Helfman, G. S., Harper, J. O., & Bolstad, P. V. (1999). The effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology, 13, 1454–1465. doi:10.1046/j.1523-1739.1999.98172.x.

    Article  Google Scholar 

  • King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153. doi:10.1890/04-0481.

    Article  Google Scholar 

  • Kociolek, J. P., & Kingston, J. C. (1999). Taxonomy, ultrastructure, and distribution of some gomphonemoid diatoms (Bacillariophyceae: Gomphonemataceae) from rivers in the United States. Canadian Journal of Botany, 77, 686–705. doi:10.1139/cjb-77-5-686.

    Article  Google Scholar 

  • Kruskall, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills: Sage.

    Google Scholar 

  • Laacke, J. (2000). Life form (software), alpha release 0.14. Pacific southwest experiment station. California: Redding.

    Google Scholar 

  • Lenat, D. R., & Crawford, J. K. (1994). Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199. doi:10.1007/BF00021291.

    Article  Google Scholar 

  • Loeb, S. L. (1981). An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnology and Oceanography, 26, 394–399.

    Article  Google Scholar 

  • Lowe, R. L., Golladay, S. W., & Webster, J. R. (1986). Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society, 5, 221–229. doi:10.2307/1467709.

    Article  Google Scholar 

  • Lowe, R. L., & LaLiberte, G. D. (1996). Benthic stream algae: Distribution and structure. In F.R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology (pp. 269–293). New York: Academic.

    Google Scholar 

  • Mathsoft (1999). S-Plus 2000 Professional Release 1. Lucent Technologies, Inc.

  • McCormick, F. H., Peck, D. V., & Larsen, D. P. (2000). Comparison of geographic classification schemes for Mid-Atlantic stream fish assemblages. Journal of the North American Benthological Society, 19, 385–404. doi:10.2307/1468102.

    Article  Google Scholar 

  • McCune, B., & Mefford, M. J. (1999). PC-ORD v. 4.10. Multivariate analysis of ecological data. Gleneden Beach: MjM Software.

    Google Scholar 

  • McRae, G., Camp, D. K., Lyons, W. G., & Dix, T. L. (1998). Relating benthic infaunal community structure to environmental variables in estuaries using nonmetric multidimensional scaling and similarity analysis. Environmental Monitoring And Assessment, 51, 233–246. doi:10.1023/A:1005943504335.

    Article  CAS  Google Scholar 

  • Mosisch, T. D., Bunn, S. E., & Davies, P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology, 46, 1269–1278. doi:10.1046/j.1365-2427.2001.00747.x.

    Article  Google Scholar 

  • Mykra, H., Heino, J., & Muotka, T. (2004). Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications. Environmental Management, 34, 341–352. doi:10.1007/s00267-004-0236-1.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. doi:10.1146/annurev.ecolsys.32.081501.114040.

    Article  Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32, 127–157. doi:10.1146/annurev.ecolsys.32.081501.114012.

    Article  Google Scholar 

  • Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B., et al. (1997). The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience, 47, 769–784. doi:10.2307/1313099.

    Article  Google Scholar 

  • Potapova, M., & Charles, D. F. (2007). Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators, 7, 48–70. doi:10.1016/j.ecolind.2005.10.001.

    Article  Google Scholar 

  • Rahel, F. J. (2000). Homogenization of fish faunas across the United States. Science, 288, 854–856. doi:10.1126/science.288.5467.854.

    Article  CAS  Google Scholar 

  • Rosemond, A. D. (1993). Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia, 94, 585–594. doi:10.1007/BF00566976.

    Article  Google Scholar 

  • Roy, A. H., Rosemond, A. D., Paul, M. J., Leigh, D. S., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biology, 48, 329–346. doi:10.1046/j.1365-2427.2003.00979.x.

    Article  Google Scholar 

  • Scott, M. C. (2001). Integrating the stream and its valley: Land use change, aquatic habitat, and fish assemblages. Dissertation, University of Georgia.

  • Scott, M. C., & Helfman, G. S. (2001). Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries, 26, 6–15. doi:10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2.

    Article  Google Scholar 

  • Scott, M. C., Helfman, G. S., McTammany, M. E., Benfield, E. F., & Bolstad, P. V. (2002). Multiscale influences on physical and chemical stream conditions across Blue Ridge landscapes. Water Resources Bulletin, 38, 1379–1392.

    CAS  Google Scholar 

  • Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46, 337–365. doi:10.2307/3817.

    Google Scholar 

  • Strange, E. M., Fausch, K. D., & Covich, A. P. (1999). Sustaining ecosystem services in human-dominated watersheds: Biohydrology and ecosystem processes in the South Platte River Basin. Environmental Management, 24, 39–54. doi:10.1007/s002679900213.

    Article  Google Scholar 

  • Sutherland, A. B., Meyer, J. L., & Gardiner, E. P. (2002). Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshwater Biology, 47, 1791–1805. doi:10.1046/j.1365-2427.2002.00927.x.

    Article  Google Scholar 

  • Turner, M. G., Wear, D. N., & Flamm, R. O. (1996). Land ownership and land-cover change in the southern Appalachian highlands and the Olympic peninsula. Ecological Applications, 6, 1150–1172. doi:10.2307/2269599.

    Article  Google Scholar 

  • Wallace, J. B., Webster, J. R., & Lowe, R. L. (1992). High-gradient streams of the Appalachians. In C. T. Hackney, S. M. Adams, & W. A. Martin (Eds.), Biodiversity of the Southeastern United States/ aquatic communities (pp. 131–191). New York: Wiley.

    Google Scholar 

  • Walters, D. M., Leigh, D. S., & Bearden, A. B. (2003). Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia, 494, 5–10. doi:10.1023/A:1025412804074.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., Bannerman, R., & Emmons, E. (2000). Watershed urbanization and changes in fish communities in southeastern Wisconsin streams. Journal of the American Water Resources Association, 36, 1173–1189. doi:10.1111/j.1752-1688.2000.tb05719.x.

    Article  Google Scholar 

  • Wang, L. Z., Lyons, J., Kanehl, P., & Gatti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22, 6–12. doi:10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2.

    Article  Google Scholar 

  • Wang, L. Z., Lyons, J., & Kanehl, P. (2003). Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society, 132, 825–839. doi:10.1577/T02-099.

    Article  Google Scholar 

  • Waters, T. F. (1995). Sediment in streams: Sources, biological effects, and control. American Fisheries Society Monograph 7.

  • Wear, D. N., & Bolstad, P. V. (1998). Land use changes in Southern Appalachian landscapes: Spatial analysis and forecast evaluation. Ecosystems, 1, 575–594. doi:10.1007/s100219900052.

    Article  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1991). Limmnological analyses. New York: Springer.

    Google Scholar 

  • Wilson, M. A., & Carpenter, S. R. (1999). Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecological Applications, 9,772–783.

    Google Scholar 

  • Wishart, D. (1969). An algorithm for hierarchical classifications. Biometrics, 25, 165–170. doi:10.2307/2528688.

    Article  Google Scholar 

  • Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217. doi:10.1007/s002679900019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Gardiner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gardiner, E.P., Sutherland, A.B., Bixby, R.J. et al. Linking stream and landscape trajectories in the southern Appalachians. Environ Monit Assess 156, 17–36 (2009). https://doi.org/10.1007/s10661-008-0460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0460-x

Keywords

  • Stream ecology
  • Land use change
  • Biotic response
  • Water chemistry
  • Watershed
  • Catchment classification
  • Ecological forecasting