Anderson, S., Sadinski, W., Shugart, L., Brussard, P., Depledge, M., Ford, T., et al. (1994). Genetic and molecular ecotoxicology: a research framework. Environmental Health Perspectives, 102, 3–8.
Google Scholar
Andreasen, J. k. (1985). Insecticide resistance in mosquitofish of the lower Rio Grande Valley of Texas an ecological hazard? Archives of Environmental Contamination and Toxicology, 14, 573–577. doi:10.1007/BF01055387.
Article
CAS
Google Scholar
Antonovics, J., Bradshaw, A. D., & Turner, T. (1971). Heavy metal tolerance in plants. Adv Ecology Ressources, 7, 1–85.
Article
Google Scholar
Bervoets, L., & Blust, R. (2003). Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environmental Pollution, 126, 9–19. doi:10.1016/S0269-7491(03)00173-8.
Article
CAS
Google Scholar
Byczkowski, J. Z., & Sorenson, J. R. J. (1984). Effects of metal compounds on mitochondrial function: a review. The Science of the Total Environment, 37, 133–162. doi:10.1016/0048-9697(84)90091-3.
Article
CAS
Google Scholar
De Nicola, M., Cardellicchio, N., Gambardella, C., Guarino, S. M., & Marra, C. (1993). Effects of cadmium on survival, bioaccumulation, histopathology and PGM polymorphism in the marine Isopod Idotea baltica. In R. Dallinger & P. S. Rainbow (Eds.), Ecotoxicology of Metals in invertebrates (pp. 103–116). Florida: CRC.
Google Scholar
Diamond, S. A., Newman, M. C., Mulvey, M., & Guttman, S. I. (1991). Allozyme genotype and time to death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of populations. Aquatic Toxicology (Amsterdam, Netherlands), 21, 119–134. doi:10.1016/0166-445X(91)90010-7.
CAS
Google Scholar
Dutta, T. K., & Kaviraj, A. (2001). Acute toxicity of cadmium to fish Labeo rohita and copepod Diaptomus forbesi pre-exposed to CaO and KMnO4. Chemosphere, 42, 955–958. doi:10.1016/S0045-6535(00)00166-1.
Article
CAS
Google Scholar
Eisler, R. (1971). Cadmium poisoning in Fundulus heteroclitus and other marine organisms. Journal of Fish Resources Board Canada, 28, 1225–1234.
CAS
Google Scholar
Fargasova, A. (1998). Comparative acute toxicity of Cu, Mn, Mo, Ni, and V to Chironomus plumosus larvae and Tubilfex worms. Biologia, 53, 315–319.
CAS
Google Scholar
Finney, D. J. (1971). Probit analysis (p. 337). London: Cambrige University Press.
Google Scholar
Gillespie, R. B., & Guttman, S. I. (1993). Correlations between water quality and frequencies of allozyme genotypes in spotfin shiner (Notropis spilopteris) populations. Environmental Pollution, 81, 147–150. doi:10.1016/0269-7491(93)90079-4.
Article
CAS
Google Scholar
Groenendijk, D., van Opzeeland, B., Pires, L. M. D., & Postma, J. F. (1999). Fluctuating life-history parameters indicating temporal variability in metal adaptation in riverine chironomiuds. Archives of Environmental Contamination and Toxicology, 37, 175–181. doi:10.1007/s002449900503.
Article
CAS
Google Scholar
Hamza-Chaffai, A., Cossin, R. P., Amiard-Triquet, C., & El Abed, A. (1995). Physico-chemical forms of storage of metals (Cd, Cu, and Zn) and metallothionein-like proteins in gills and liver of marine fish from the Tunisian coast: ecotoxicological consequences. Comparative Biochemistry and Physiology, 102(C, no 2), 329–341.
Google Scholar
Hawkins, W. E., Tate, L. G., & Sarphie, T. G. (1980). Acute effects of cadmium on the spot, Leiostomus xanthurus (teleost): tissue distribution and renal ultastructure. Journal of Toxicology and Environmental Health, 6, 283–295.
CAS
Article
Google Scholar
Heagler, M. G., Newman, M. C., Mulvey, M., & Dixon, P. M. (1993). Allozyme genotype in mosquitofish Gambusia holbrooki, during mercury exposure: temporal stability, concentration effects and field verification. Environmental Toxicology and Chemistry, 12, 385–395. doi:10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2.
Article
CAS
Google Scholar
Hiatt, V., & Huff, E. (1975). The environmental impact of cadmium: an overview. The International Journal of Environmental Studies, 7, 277–285. doi:10.1080/00207237508709704.
Article
CAS
Google Scholar
Hoeskstra, J. A., Vaal, M. A., Notenboom, J., & Sloof, W. (1994). Variation in the sensitivity of aquatic species to toxicants. Bulletin of Environmental Contamination and Toxicology, 53, 98–105.
Google Scholar
Hopps, H. C. (1974). Overview. In Geochestry and Environment (Vol. 1, pp. 3–21). Washington, DC: American Academie of Science.
Google Scholar
Hu, Z. A., & Wang, H. X. (2001). Molecular mechanism of stress adaptation in plant natural populations. Acta Botanica Sinica, 43, 111–118.
CAS
Google Scholar
Ivorra, N., Barranguet, C., Jonker, M., Kraak, M. H. S., & Admiraal, W. (2002). Metal-induced tolerance in the freshwater microbentic diatom Gomphonema parvulum. Environmental Pollution, 116, 147–157. doi:10.1016/S0269-7491(01)00152-X.
Article
CAS
Google Scholar
Kaviraj, A., & Das, B. K. (1994). Cadmium induced changes in fish and other aquatic organisms. Journal of Natural Conservation, 6, 105–122.
Google Scholar
Keklak, M. M., Newman, M. C., & Mulvey, M. (1994). Enhanced uranium tolerance of an exposed population of the eastern mosquitofish Gambusia holbrooki. Archives of Environmental Contamination and Toxicology, 27, 20–24. doi:10.1007/BF00203882.
Article
CAS
Google Scholar
Klerks, P. L., & Levinton, J. S. (1989). Rapid evolution of metal resistance in benthic oligochaete inhabiting a metal-polluted site. The Biological Bulletin, 176, 135–141. doi:10.2307/1541580.
Article
CAS
Google Scholar
Klerks, P. L., & Weis, J. S. (1987). Genetic adaptation to heavy metals in aquatic organism a review. Environmental Pollution, 45, 173–205. doi:10.1016/0269-7491(87)90057-1.
Article
CAS
Google Scholar
Kopp, R. L., Guttman, S. I., & Wissing, T. E. (1992). Genetic indicators of environmental stress in central mudminnow (Umbra limi) populations exposed to acid deposition in the Adirondack mountains. Environmental Toxicology and Chemistry, 11, 665–676. doi:10.1897/1552-8618(1992)11[665:GIOESI]2.0.CO;2.
Article
CAS
Google Scholar
Miliou, H., Zaboukas, N., & Moraitou Apostolopoulu, M. (1998). Biochemical composition, growth, and survival of the Guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Environmental Contamination and Toxicology, 35, 58–63. doi:10.1007/s002449900349.
Article
CAS
Google Scholar
Nacci, D., Covio, L., Champhri, D., Jayaramam, S., Micknney, R., Gleason, T. R., et al. (1999). Adaptations wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants. Marine Biology (Berlin), 134, 9–17. doi:10.1007/s002270050520.
Article
Google Scholar
Page, A. L., Binghmam, F. T., & Chang, A. C. (1981). Effect of heavy metal pollution on plants. Applied Science, London (N.W. Lepp.Edt.), 1, 77–109.
CAS
Google Scholar
Paternello, T., Guinez, K., & Battaglia, B. (1991). Effects of pollution on heterozygosity in the barnacle Balanus amphitrite (Cirripedia: Thoracica). Marine Ecology Progress Series, 70, 237–243. doi:10.3354/meps070237.
Article
Google Scholar
Reinecke, S. A., Prinsloo, M. W., & Reinecke, A. J. (1999). Resistance of Eisenia fetida (Oligochaeta) to cadmium after long-term exposure. Ecotoxicology and Environmental Safety, 42, 75–80. doi:10.1006/eesa.1998.1731.
Article
CAS
Google Scholar
Reznick, D. N., & Ghalambor, C. K. (2001). The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptative evolution. Genetica, 112, 183–198. doi:10.1023/A:1013352109042.
Article
Google Scholar
Ryan, J. A., Pahren, H. R., & Lucas, J. B. (1982). Controlling cadmium in the human health chain: Review and rationale based on health effects. Environmental Research, 28, 251–302. doi:10.1016/0013-9351(82)90128-1.
Article
CAS
Google Scholar
Schlueter, M. A., Guttman, S. I., Oris, J. T., & Bailer, A. J. (1995). Survival of copper-exposed juvenile fathead minnows (Pimephales promelas) differs among allozyme genotypes. Environmental Toxicology and Chemistry, 10, 1727–1734. doi:10.1897/1552-8618(1995)14[1727:SOCJFM]2.0.CO;2.
Article
Google Scholar
Serbaji, M. M. (2000). Utilisation d’un SIG multi-sources pour la compréhension et la gestion intégrée de l’écosystème côtier de la région de Sfax (Tunisie). Thèse Doctorat Géologie Université Tunis II (p. 226).
Sokolova, I. M. (2004). Cadmium effects on mitochondrial function are enhanced by elevated temperatures in marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). The Journal of Experimental Biology, 207, 2639–2648. doi:10.1242/jeb.01054.
Article
CAS
Google Scholar
Sokolova, I. M., Evans, S., & Hughes, F. M. (2004). Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. The Journal of Experimental Biology, 207, 3369–3380. doi:10.1242/jeb.01152.
Article
CAS
Google Scholar
Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336. doi:10.1016/0891-5849(94)00159-H.
Article
CAS
Google Scholar
Tatara, C. P., Newman, M. C., & Mulvey, M. (2001). Effect of mercury and Gpi-2 genotype on standard metabolic rate of eastern mosquitofish (Gambusia holbrooki). Environmental Toxicology and Chemistry, 20, 782–786. doi:10.1897/1551-5028(2001)020<0782:EOMAGG>2.0.CO;2.
Article
CAS
Google Scholar
Viarengo, A. (1994). Heavy metal cytotoxicity in marine organisms: effects on Ca2 + homeostasis and possible alteration of signal transduction pathway. Advance Comparative Environmental Physiology, 20, 85–109.
CAS
Google Scholar
Warchalowska-Sliwa, E., Niklinska, M., Görlich, A., Michailova, P., & Pyza, E. (2005). Heavy metal accumulation, heat shock protein expression and cytogenetic changess in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas. Environmental Pollution, 133, 373–381. doi:10.1016/j.envpol.2004.05.013.
Article
CAS
Google Scholar
WHO (World Health Organisation) (1992). International program on chemical safety. Environmental Health Criteria, 6, 325–329.
Google Scholar