Skip to main content

Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition

Abstract

Phytopigment estimation has a considerable interest in the evaluation of freshwater bodies’ quality, because it takes into account the synergistic effect of nutrients like phosphorus or nitrogen on algal growth producing eutrophication. Furthermore, their increasing concentration constitutes the first step in the formation of biofilms on the surface sediments, adding a new and very important element to the dynamic nature of the surface sediments. In this study the distribution of phytoplankton—in terms of chlorophyll-a, chlorophyll-b, phaeophytin-a, phaeophytin-b, total carotenoids, total chlorophyll, and total phaeophytin—was evaluated in river bed sediments. Samples collected at sites with low levels of nutrients (P,N) and metal concentrations showed lower phytopigment concentrations than those collected at the sampling sites affected by sources of pollution. Phytoplankton concentrations were directly and highly related to the organic matter concentrations—in particular to the humic fraction—as well as to the total nitrogen (N), total phosphorus (P T) and available phosphorus (P A) concentrations in sediments. In addition, phytoplankton also correlates positively with Cu, Zn, Fe and Al extracted in oxalate, being Cu the variable that most influences the phytopigment growth. These are essential metals for the metabolism of the phytoplankton, so therefore the increase in metal concentrations can increase algal growth, unless they reach toxic levels.

This is a preview of subscription content, access via your institution.

References

  • Arhonditsis, G. B., Winder, M., Brett, M., & Schindler, D. E. (2004). Patterns and mechanisms of phytoplankton variability in lake Washington (USA). Water Research, 38, 4013–4027.

    Article  CAS  Google Scholar 

  • Baudo, R., Giesy, J., & Muntau, H. (1990). Sediments: Chemistry and toxicity of in-place pollutants (p. 405). Michigan: Lewis.

    Google Scholar 

  • Bianchi, T. S., Rolff, C., Widbom, B., & Elmgren, R. (2002). Phytoplankton pigments in Baltic sea seston and sediments: Seasonal variability, fluxes, and transformations. Estuarine, Coastal and Shelf Science, 55(3), 369–383.

    Article  CAS  Google Scholar 

  • Bowe, G. (2002). Extraction and determination of chlorophylls. In F. Palumbo, G. Ziglio, & A. Van der Beken (Eds.), Detection methods for algae, protozoa and helminths in fresh and drinking water (p. 225). West Sussex, England: Wiley.

    Google Scholar 

  • Bruce, L. C., Hamilton, D., Imberger, J., Gal, G., Gophen, M., Zohary, T., et al. (2006). A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling, 193(3–4), 412–436.

    Article  Google Scholar 

  • Chen, Y., Fan, C., Teubner, K., & Dokulil, M. (2003). Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: An 8-year investigation. Hydrobiologia, 506–509, 273–279.

    Article  Google Scholar 

  • Colyer, C. L., Kinkade, C. S., Viskare, P. J., & Landers, J. P. (2005). Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Analytical and Bioanalytical Chemistry, 382(3), 559–569.

    Article  CAS  Google Scholar 

  • Cuny, P., Marty, J.-C., Chiavérini, J., Vescovali, I., Raphel, D., & Rontani, J.-F. (2002). One-year seasonal survey of the chlorophyll photodegradation process in the northwestern Mediterranean Sea. Deep-Sea Research II, 49(11), 1987–2005.

    Article  CAS  Google Scholar 

  • Devesa, R., Moldes, A. B., Díaz-Fierros, F., & Barral, M. T. (2007). Extraction study of algal pigments in river bed sediments by applying factorial designs. Talanta, 72(4), 1546–1551.

    Article  CAS  Google Scholar 

  • Dorich, R., Nelson, D., & Sommers, L. (1980). Algal availability of sediment phosphorous in drainage water of the Black Creek Watershed. Journal of Environmental Quality, 9, 557–563.

    CAS  Google Scholar 

  • Flemming, H.-C., Schmitt, J., & Marshall, K. C. (1996). Sorption properties of biofilms. In W. Calmano & U. Förstner (Eds.), Sediments and toxic substances. Environmental effects and ecotoxicity. Berlin: Springer.

    Google Scholar 

  • González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48, 215–236.

    Article  Google Scholar 

  • Guitián, F., & Carballas, T. (Eds.) (1976) Técnicas de Análisis de Suelos. Ed. Pico Sacro, Santiago de Compostela, Spain, 288 pp.

  • Gupta, L. (2001). Nature of sedimentary organic matter in the lower reaches of the Godavari River basin, India. Journal of Asian Earth Sciences, 19, 727–736.

    Article  Google Scholar 

  • Havens, K. E., James, R. T., East, T. L., & Smith, V. H. (2003). N:P ratios, light limitation and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.

    Article  CAS  Google Scholar 

  • Henley, W. J., & Yin, Y. (1998). Growth and photosynthesis of marine Synechococcus (Cyanophyceae) under iron stress. Journal of Phycology, 34(1), 94–103.

    Article  CAS  Google Scholar 

  • Hessen, D. O., Faafeng, B. A., Brettum, P., & Andersen, T. (2006). Nutrient enrichment and planktonic biomass ratios in lakes. Ecosystems, 9(4), 516–527.

    Article  CAS  Google Scholar 

  • Hudson, R. J. M. (1998). Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Science of the Total Environment, 219(2–3), 95–115.

    Article  CAS  Google Scholar 

  • Ishiwatari, R., Yamamoto, S., & Uemura, H. (2005). Lipid and lignin/cutis compounds in Lake Baikal sediments over the last 37 kyr: Implications for glacial-interglacial palaeoenvironmental change. Organic Geochemistry, 36(3), 327–347.

    Article  CAS  Google Scholar 

  • Itoh, N., Tani, Y., Soma, Y., & Soma, M. (2007). Accumulation of sedimentary photosynthetic pigments characterized by pyropheophorbide a and steryl chlorin esters (SCEs) in a shallow eutrophic coastal lake (Lake Hamana, Japan). Estuarine, Coastal and Shelf Science, 71(1–2), 287–300.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Jürgens, M. D., Williams, R. J., Neal, C., Davies, J. J. L., Barret, C., et al. (2005). Role of river bed sediments as sources or sinks of phosphorus across two major eutrophic UK river basins: The Hampshire Avon and Herefordshire Wye. Journal of hydrology, 304, 51–74.

    Article  CAS  Google Scholar 

  • Kangur, K., Möls, T., Milius, A., & Langaste, R. (2003). Phytoplankton response to changed nutrient level in Lake Peipsi (Estonia) in 1992–2001. Hydrobiologia, 506–509, 265–272.

    Article  Google Scholar 

  • Khoi, C. M., Guong, J. T., & Merckx, R. (2006). Growth of the diatom Chaetoceros calcitrans in sediment extracts from Artemia franciscana ponds at different concentrations of nitrogen and phosphorus. Aquaculture, 259(1–4), 354–364.

    Article  CAS  Google Scholar 

  • Kowalewska, G. (2005). Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quaternary International, 130(1), 141–151.

    Article  Google Scholar 

  • Kowalewska, G., Wawrzyniak-Wydrowska, B., & Szymczak, M. (2004). Chlorophyll a and its derivatives in sediments of the Odra estuary as a measure of its eutrophication. Marine Pollution Bulletin, 49(3), 148–153.

    Article  CAS  Google Scholar 

  • Kronvang, B., Svendsen, L. M., & Sibbensen, E. (Eds) (1993). Sediment and phosphorus, NERI Technical Report 178, 81–88.

  • Lamb, A. L., Wilson, G. P., & Leng, M. J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Science Reviews, 75, 29–57.

    Article  CAS  Google Scholar 

  • Lee, J. H. W., & Arega, E. (1999). Eutrophication dynamics of Tolo Harbour, Hong Kong. Marine Pollution Bulletin, 39(1–12), 187–192.

    Article  CAS  Google Scholar 

  • Mages, M., Óvári, M., Tümpling, W., & Kröpfl, K. (2004). Biofilms as bio-indicator for polluted waters?: Total reflection X-ray fluorescence analysis of biofilms of the Tisza river (Hungary). Analytical and Bioanalytical Chemistry, 378(4), 1095–1101.

    Article  CAS  Google Scholar 

  • Mead, R., Xu, Y., Chong, J., & Jaffé, R. (2005). Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Organic Geochemistry, 36(3), 363–370.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., & Price, N. M. (2003). The biogeochemical cycles of trace metals in oceans. Science, 300, 944–947.

    Article  CAS  Google Scholar 

  • Müller, P. J. (1977). C/N ratios in Pacific deep sea sediment: Effect of inorganic ammonium and organic nitrogen compound sorbed by clays. Geochimica et Cosmochimica Acta, 41(6), 765–776.

    Article  Google Scholar 

  • Munda, I. M., & Veber, M. (2004). Interactive effects of macronutrients and metals (Mn, Co, Zn) on the ephemeral green alga Ulva rigida C. Agardh (Chlorophyta, Ulvophyceae, Ulvales). Nova Hedwigia, 79(3–4), 353–375.

    Article  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Ohkubo, N., Yagi, O., & Okada, M. (1998). Effects of humic and fulvic acids on the growth of Microcystis aeruginosa. Environmental Technology, 19(6), 611–617.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal, 1, 76–113.

    CAS  Google Scholar 

  • Peperzak, L., Colijn, F., Koeman, R., Gieskes, W. W. C., & Joordens, J. C. A. (2003). Phytoplankton sinking rates in the Rhine region of freshwater influence. Journal of Plankton Research, 25(4), 365–383.

    Article  Google Scholar 

  • Reuss, N., Conley, D., & Bianchi, T. (2005). Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 95(3–4), 283–302.

    Article  CAS  Google Scholar 

  • Sagher, A. (1976). Availability of soil runoff phosphorous to algae. Ph. D. diss. Univ. Wisconsin, Madison, WI (Diss. Abastr. 76–29, 935).

  • Schwertmann, U. (1964). Differienzierung der Eisenoxide des Bodens durch Extraktion mit Ammonium Oxalat-Lösung. Z Planzernäh Dung Bodenk, 105, 194–202.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1982). Separating soil iron and manganese oxide fractions for microelement analysis. Soil Science Society American Journal, 46, 1099–1102.

    CAS  Google Scholar 

  • Sims, J. T., & Sharpley, A. N., (Eds) (2005). Phosphorus: Agriculture and the environment. Am. Soc. Agronomy, Crop. Sci. Soc. Am. and Soil Sci. Soc. Am. Wisconsin. USA. 1121 pp.

  • Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669–671.

    Article  CAS  Google Scholar 

  • Sterling, M. S., Ashley, K. J., & Bautista, A. B. (2000). Slow release fertilizer for rehabilitating oligotrophic streams: A physical characterization. Water Quality Research Journal of Canada, 35, 73–94.

    CAS  Google Scholar 

  • Übner, M., Treuman, M., Vütak, A., & Lopp, M. (2004). Properties of humic substances from the Baltic Sea and Lake Ermistu mud. Journal of Soils and Sediments, 4(1), 24–29.

    Article  Google Scholar 

  • Wang, W.-X., & Dei, R. C. H. (2001). Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 111(2), 233–240.

    Article  CAS  Google Scholar 

  • Wang, H., Appan, A., & Gulliver, J. S. (2003). Modeling of phosphorus dynamics in aquatic sediments: I–model development. Water Research, 37, 3928–3938.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology, 144, 307–313.

    CAS  Google Scholar 

  • Welschmeyer, N. A., & Lorenzen, C. J. (1985). Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnology and Oceanography, 30(1), 1–21.

    CAS  Article  Google Scholar 

  • Wiltshire, K. (2000). Algae and associated pigments of intertidal sediments, new observations and methods. Limnologica, 30, 205–214.

    Google Scholar 

  • Wolf, A., Baker, D., Pionke, H., & Kunishi, H. (1985). Soil tests for estimating labile, soluble, and algae-available phosphorus in agricultural soils. Journal of Environmental Quality, 14(3), 341–404.

    Article  Google Scholar 

  • Xie, L., Xie, P., Li, S., Tang, H., & Lin, H. (2003). The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research, 37, 2073–2080.

    Article  CAS  Google Scholar 

  • Zepp, R. (1988). Environmental photoprocesses involving natural organic matter. In F. Frimmel, & R. Christman (Eds.), Humic substances and their role in the environment (p. 271). Berlin: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devesa-Rey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Devesa-Rey, R., Moldes, A.B., Díaz-Fierros, F. et al. Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environ Monit Assess 153, 147–159 (2009). https://doi.org/10.1007/s10661-008-0345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0345-z

Keywords

  • Chlorophyll
  • Phaeophytin
  • Carotenoids
  • Phytopigments
  • Sediments