Skip to main content

Advertisement

Log in

Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 811–826.

    Google Scholar 

  • Baker, A. J. M., McGrath, S. P., & Sidoli, C. M. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49.

    Article  Google Scholar 

  • Basic, N., Keller, C., Fontanillas, P., Vittoz, P., Besnard, G., & Galland, N. (2006). Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biology, 8, 64–72.

    Article  CAS  Google Scholar 

  • Brooks, R. R., Chambers, M. F., & Nicks, L. J. (1998). Robinson B.H., Phytomining. Trends in Plant Science, 3, 359–362.

    Article  Google Scholar 

  • Brooks, R. R., Lee, J., & Reeves, R. D. (1977). Detection of nickliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration, 7, 49–77.

    Article  CAS  Google Scholar 

  • Brooks, R. R., & Radford, C. C. (1978). Nickel accumulation by Buropean species of the genus Alyssum. Proceedings of the Royal Society of London, Series B. Biological Sciences, 200, 197–04.

  • Chaney, R. L., Malik, M., & Li, Y. M. (1997). Phytoremediation of soil metals. Current Opinions in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Dahmani-Muller, H., Oort, V. F., & Balabane, M. (2001). Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environmental Pollution, 114, 77–84.

    Article  CAS  Google Scholar 

  • Fayiga, A. O., & Ma, L. Q. (2006). Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata. Science of the Total Environment, 359, 17–25.

    Article  CAS  Google Scholar 

  • Huang, J. W., & Cunningham, S. D. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 134, 75–84.

    Article  CAS  Google Scholar 

  • Ince, N. J., Dirilgen, N., Apikyan, I. G., Tezcanli, G., & Ustun, B. (1999). Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Archives of Environmental Contamination and Toxicology, 36, 365–372.

    Article  CAS  Google Scholar 

  • Kong, L. S. (1982). Accumulation, tolerance and variation of plant to heavy metal. Environmental Science, 1, 65–69.

    Google Scholar 

  • Kramer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., & Smith, J. A. C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638.

    Article  CAS  Google Scholar 

  • Liu, W., Shu, W. S., & Lan, C. Y. (2004). Viola baoshanensis a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 1, 29–34.

    Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., & Cai, Y. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Malaisse, B., Gregoire, J., Morrison, R. S., & Reeves, R. D. (1979). Aeolanthus biformifoliu: a hyper accumulator of copper from Zaire. Science, 199, 887–888.

    Article  Google Scholar 

  • Ortiz, D. F., Ruscitti, T., McCue, K. F., & Ow, D. W. (1995). Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemist, 270, 4721–4728.

    Article  CAS  Google Scholar 

  • Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 24,9, 57–65.

    Article  Google Scholar 

  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environmental Pollution, 31, 227–287.

    Google Scholar 

  • Solís-Domínguez, F. A., González-Chávez, M. C., Carrillo-González, R., & Rodríguez-Vázquez, R. (2007). Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials, 141, 630–636.

    Article  Google Scholar 

  • Sun, T. H., Zhou, Q. X., & Li, P. J. (2001). Pollution ecology. Beijing, China: Science Press.

    Google Scholar 

  • Wei, S. H., & Zhou, Q. X. (2006). Phytoremediation of cadmium-contaminated soils by Rorippa globosa. Environmental Science and Pollution Research, 3, 151–155.

    Article  Google Scholar 

  • Wei, S. H., Zhou, Q. X., & Liu, R. (2005). Utilization of weed resource in the remediation of soils contaminated by heavy metals. Journal of Natural Resource, 20, 432–440.

    Google Scholar 

  • Wenzel, W. W., & Jockwer, F. (1999). Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environmental Pollution, 104, 145–155.

    Article  CAS  Google Scholar 

  • Xia, J. Q. (1996). Detail explanation on the state soil-environment quality standard of China. Beijing, China: Chinese Enviromental Science Press.

    Google Scholar 

  • Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J. M., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.

    Article  CAS  Google Scholar 

  • Yang, X. E., Long, X. X., Ni, W. Z., & Fu, C. X. (2002). Sedum alfreii H: a new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin, 47, 1634–1637.

    Article  CAS  Google Scholar 

  • Zhang, Z. C., Gao, X., & Qiu, B. S. (2008). Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry, 69, 911–918.

    Article  CAS  Google Scholar 

  • Zhou, Q. X., & Song, Y. F. (2004). Remediation of contaminated soils principles and methods. Beijing, China: Sciences Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, S., Zhou, Q., Xiao, H. et al. Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment. Environ Monit Assess 152, 299–307 (2009). https://doi.org/10.1007/s10661-008-0316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0316-4

Keywords

Navigation