Principal response curves technique for the analysis of multivariate biomonitoring time series

  • Paul J. van den Brink
  • Piet J. den Besten
  • Abraham bij de Vaate
  • Cajo J. F. ter Braak
Article

Abstract

Although chemical and biological monitoring is often used to evaluate the quality of surface waters for regulatory purposes and/or to evaluate environmental status and trends, the resulting biological and chemical data sets are large and difficult to evaluate. Multivariate techniques have long been used to analyse complex data sets. This paper discusses the methods currently in use and introduces the principal response curves method, which overcomes the problem of cluttered graphical results representation that is a great drawback of most conventional methods. To illustrate this, two example data sets are analysed using two ordination techniques, principal component analysis and principal response curves. Whereas PCA results in a difficult-to-interpret diagram, principal response curves related methods are able to show changes in community composition in a diagram that is easy to read. The principal response curves method is used to show trends over time with an internal reference (overall mean or reference year) or external reference (e.g. preferred water quality or reference site). Advantages and disadvantages of both methods are discussed and illustrated.

Keywords

Biological monitoring Macroinvertebrates Multivariate analysis Principal component analysis Principal response curves Water framework directive 

References

  1. Anonymous (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of EU L, 327, 1–3.Google Scholar
  2. Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems using the reference condition approach. Boston, USA: Kluwer.Google Scholar
  3. Batzer, D. P., George, B. M., & Braccia, A. (2005). Aquatic invertebrate responses to timber harvest in a bottomland hardwood wetland in South Carolina. Forest Science, 51, 284–291.Google Scholar
  4. Bij de Vaate, A., Breukel, R., & Van der Velde, G. (2006). Long-term developments in ecological rehabilitation of the main distributaries in the Rhine delta: fish and macroinvertebrates. Hydrobiologia, 565, 229–242.CrossRefGoogle Scholar
  5. Bij de Vaate, A., Greijdanvus, K. M., & Smit, H. (1992). Densities and biomass of zebra mussels in the Dutch part of the Lower Rhine. In D. Neumann & H. A. Jenner (Eds.), The zebra mussel, Dreissena polymorpha. Ecology, biological monitoring and first application in water quality management (pp. 67–77). Stuttgart, Germany: Limnologie aktuell 4. Gustav Fischer Verlag.Google Scholar
  6. Bij de Vaate, A., Jazdzewski, K., Ketelaars, H., Gollasch, S., & Van der Velde, G. (2002). Geographical patterns in range extension of macroinvertebrate Ponto-Caspian species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1159–1174.CrossRefGoogle Scholar
  7. Bij de Vaate, A., & Klink, A. G. (1995). Dikerogammarus villosus Sowinsky (Crustacea: Gammaridae) a new immigrant in the Dutch part of the Lower Rhine. Lauterbornia, 20, 51–54.Google Scholar
  8. Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.CrossRefGoogle Scholar
  9. Cairns, J. Jr. (1982). Artificial substrates. Ann Arbor, USA: Ann Arbor Science Publishers.Google Scholar
  10. Cao, Y., & Hawkins, C. P. (2005). Simulating biological impairment to evaluate the accuracy of ecological indicators. Journal of Applied Ecology, 42, 954–965.CrossRefGoogle Scholar
  11. Chambers, P. A., Meissner, R., Wrona, F. J., Rupp, H., Guhr, H., Seeger, J., et al. (2006). Changes in nutrient loading in an agricultural watershed and its effects on water quality and stream biota. Hydrobiologia, 556, 399–415.CrossRefGoogle Scholar
  12. De Pauw, N., Lambert, V., Van Kenhove, A., & Bij de Vaate, A. (1994). Comparison of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and The Netherlands. J. Env. Mon. Ass., 30, 25–47.CrossRefGoogle Scholar
  13. Dick, J. T. A. (1996). Post-invasion amphipod communities of Lough Neagh, Northern Ireland: influences of habitat selection and mutual predation. Journal of Animal Ecology, 65, 756–767.CrossRefGoogle Scholar
  14. Gittenberger, E., Janssen, A. W., Kuijper, W. J., Kuiper, J. G. J., Meijer, T., Van der Velde, G., et al. (1998). De Nederlandse zoetwatermollusken. Recente en fossiele weekdieren uit zoet en brak water. Nederlandse Fauna Vol 2. Utrecht, The Netherlands: KNNV Publishers.Google Scholar
  15. Kersting, K., & Van den Brink, P. J. (1997). Effects of the insecticide Dursban®4E (active ingredient chlorpyrifos) in outdoor experimental ditches: III. Responses of ecosystem metabolism. Environmental Toxicology and Chemistry, 16, 251–259.CrossRefGoogle Scholar
  16. Kinzelbach, R. (1997). Aquatische Neozoen in Europa. Newsletter der Arbeitsgruppe Neozoen, 1, 7–8.Google Scholar
  17. Leonard, A. W., Hyne, R. V., Lim, R. P., Pablo, F., & Van den Brink, P. J. (2000). Riverine Endosulfan concentrations in the Namoi River, Australia: link to cotton field runoff and macroinvertebrate population densities. Environ. Toxicol. Chem., 19, 1540–1551.CrossRefGoogle Scholar
  18. Li, Z., & Kafatos, M. (2000). Interannual variability of vegetation in the United States and its relation to El Niňo/Southern Oscillation. Remote Sensing of Environment, 71, 239–247.CrossRefGoogle Scholar
  19. Marguillier, S., Dehairs, F., Van der Velde, G., Kelleher, B., & Rajagopal, S. (1998). Initial results on the trophic relationships based on Corophium curvispinum in the Rhine traced by stable isotopes. In P. H. Nienhuis, R. S. E. W. Leuven, & A. M. J. Ragas (Eds.), New concepts for sustainable management of river basins (pp. 171–177). Leiden, The Netherlands: Backhuys Publishers).Google Scholar
  20. Marteijn, E. C. L., Mulder, W. H., Noordhuis, R., Van Oirschot, M. & Prins, H. (1995). Biological monitoring of large freshwater bodies as integrated part of water management in The Netherlands. (Paper presented at the International workshop Monitoring Tailor-made, Beekbergen, The Netherlands).Google Scholar
  21. McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design.Google Scholar
  22. Pardal, M. A., Gardosos, P. G., Sousa, J. P., Marques, J. C., & Raffaelli, D. (2004). Assessing environmental quality: a novel approach. Marine Ecology Progress Series, 267, 1–8.CrossRefGoogle Scholar
  23. Pashkevich, A., Pavluk, T., & Bij de Vaate, A. (1996). Efficiency of a standardized artificial substrate for biological monitoring of river water quality. Environmental Monitoring and Assessment, 40, 143–156.CrossRefGoogle Scholar
  24. Reynoldson, T. B., & Piearce, B. (1979). Predation on snails by three species of triclad and its bearing on the distribution of Planaria torva in Britain. Journal of Zoology, 189, 459–484.CrossRefGoogle Scholar
  25. Schäfers, C., Hommen, U., Dembinski, M., & Gonzalez-Valero, J. F. (2006). Aquatic macroinvertebrates in the Altes land, an intensely used orchard region in Germany: correlation between community structure and potential for pesticide exposure. Environmental Toxicology and Chemistry, 25, 3275–3288.CrossRefGoogle Scholar
  26. Stainbrook, K. M., Limburg, K. E., Daniels, R. A., & Schmidt, R. E. (2006). Long-term changes in ecosystem health of two Hudson Valley watersheds, New York, USA, 1936–001. Hydrobiologia, 571, 313–327.CrossRefGoogle Scholar
  27. Ter Braak, C. J. F. (1995). Ordination. In R. G. H. Jongman, C. J. F. Ter Braak, & O. F. R. Van Tongeren (Eds.), Data analysis in community and landscape ecology (pp. 91–173). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  28. Ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18, 271–317.CrossRefGoogle Scholar
  29. Ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and canodraw for windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power.Google Scholar
  30. Van den Brink, P. J., Hattink, J., Bransen, F., Van Donk, E., & Brock, T. C. M. (2000). Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquatic Toxicology, 48, 251–264.CrossRefGoogle Scholar
  31. Van den Brink, P. J., & Ter Braak, C. J. F. (1998). Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquatic Ecology, 32, 161–178.Google Scholar
  32. Van den Brink, P. J., & Ter Braak, C. J. F. (1999). Principal response curves: Analysis of time dependent multivariate responses of a biological community to stress. Environmental Toxicology and Chemistry, 18, 138–148.CrossRefGoogle Scholar
  33. Van den Brink, P. J., Van den Brink, N. W., & Ter Braak, C. J. F. (2003). Multivariate analysis of ecotoxicological data using ordination: Demonstrations of utility on the basis of various examples. Australasian Journal of Ecotoxicology, 9, 141–156.Google Scholar
  34. Van den Brink, F. W. B., Van der Velde, G., & Bij de Vaate, A. (1989). A note on the immigration of Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda) into The Netherlands via the River Rhine. Bulletin Zoologisch Museum Universiteit van Amsterdam, 11, 211–213.Google Scholar
  35. Van den Brink, F. W. B., Van der Velde, G., & Bij de Vaate, A. (1991). Amphipod invasion on the Rhine. Nature, 352, 576.CrossRefGoogle Scholar
  36. Van der Velde, G., Nagelkerken, I., Rajagopal, S., & Bij de Vaate, A. (2002). Invasions by alien species in inland freshwater bodies in Western Europe: the Rhine delta. In E. Leppäkoski, S. Gollasch, & S. Olenin (Eds.), Aquatic invasive species of Europe. Distribution, impacts and management (pp. 360–372). Dordrecht, The Netherlands: Kluwer.Google Scholar
  37. Van der Velde, G., Rajagopal, S., Van den Brink, F. W. B., Kelleher, B., Paffen, B. G. P., Kempers, A. J., et al. (1998). Ecological impact of an exotic amphipod invasion in the River Rhine. In P. H. Nienhuis, R. S. E. W. Leuven, & A. M. J. Ragas (Eds.), New concepts for sustainable management of river basins (pp. 159–169). Leiden, The Netherlands: Backhuys Publishers.Google Scholar
  38. Voelz, N. J., Zuellig, R. E., Shieh, S.-H., & Ward, J. V. (2005). The effects of urban areas on benthic macroinvertebrates in two Colorado plain rivers. Environmental Monitoring and Assessment, 101, 175–202.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paul J. van den Brink
    • 1
    • 2
  • Piet J. den Besten
    • 3
  • Abraham bij de Vaate
    • 3
    • 4
  • Cajo J. F. ter Braak
    • 5
  1. 1.AlterraWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Department of Aquatic Ecology and Water Quality ManagementWageningen University, Wageningen University and Research CentreWageningenThe Netherlands
  3. 3.Centre for Water ManagementRijkswaterstaat, Ministry of Transport, Public Works and Water ManagementLelystadThe Netherlands
  4. 4.Waterfauna Hydrobiological ConsultancyLelystadThe Netherlands
  5. 5.BiometrisWageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations